Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_1_a5, author = {El-Zanati, Saad I. and Ermete, Marie and Hasty, James and Plantholt, Michael J. and Tipnis, Shailesh}, title = {On {Decomposing} {Regular} {Graphs} {Into} {Isomorphic} {Double-Stars}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {73--79}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a5/} }
TY - JOUR AU - El-Zanati, Saad I. AU - Ermete, Marie AU - Hasty, James AU - Plantholt, Michael J. AU - Tipnis, Shailesh TI - On Decomposing Regular Graphs Into Isomorphic Double-Stars JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 73 EP - 79 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a5/ LA - en ID - DMGT_2015_35_1_a5 ER -
%0 Journal Article %A El-Zanati, Saad I. %A Ermete, Marie %A Hasty, James %A Plantholt, Michael J. %A Tipnis, Shailesh %T On Decomposing Regular Graphs Into Isomorphic Double-Stars %J Discussiones Mathematicae. Graph Theory %D 2015 %P 73-79 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a5/ %G en %F DMGT_2015_35_1_a5
El-Zanati, Saad I.; Ermete, Marie; Hasty, James; Plantholt, Michael J.; Tipnis, Shailesh. On Decomposing Regular Graphs Into Isomorphic Double-Stars. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 73-79. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a5/
[1] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008) 373-410. doi:10.1002/jcd.20170
[2] D. Bryant and S. El-Zanati, Graph decompositions, in: Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz (Ed(s)), (2nd Ed., Chapman & Hall/CRC, Boca Raton, 2007) 477-485.
[3] S.I. El-Zanati, M.J. Plantholt and S. Tipnis, On decomposing even regular multi-graphs into small isomorphic trees, Discrete Math. 325 (2014) 47-51. doi:10.1016/j.disc.2014.02.011
[4] J.A Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6.
[5] R. Häggkvist, Decompositions of complete bipartite graphs, London Math. Soc. Lecture Note Ser. C.U.P., Cambridge 141 (1989) 115-147.
[6] M.S. Jacobson, M. Truszczyński and Zs. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991) 17-27. doi:10.1016/0012-365X(91)90396-J
[7] F. Jaeger, C. Payan and M. Kouider, Partition of odd regular graphs into bistars, Discrete Math. 46 (1983) 93-94. doi:10.1016/0012-365X(83)90275-3
[8] K.F. Jao, A.V. Kostochka and D.B. West, Decomposition of Cartesian products of regular graphs into isomorphic trees, J. Comb. 4 (2013) 469-490.
[9] A. Kotzig, Problem 1, in: Problem session, Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XXIV (1979) 913-915.
[10] G. Ringel, Problem 25, in: Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963, Prague (1964), 162.
[11] H. Snevily, Combinatorics of Finite Sets, Ph.D. Thesis, (University of Illinois 1991).