Products of Geodesic Graphs and the Geodetic Number of Products
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 35-42.

Voir la notice de l'article provenant de la source Library of Science

Given a connected graph and a vertex x ∈ V (G), the geodesic graph P_x(G) has the same vertex set as G with edges uv iff either v is on an x − u geodesic path or u is on an x − v geodesic path. A characterization is given of those graphs all of whose geodesic graphs are complete bipartite. It is also shown that the geodetic number of the Cartesian product of K_m,n with itself, where m, n ≥ 4, is equal to the minimum of m, n and eight.
Keywords: geodesic graph, geodetic number, Cartesian products
@article{DMGT_2015_35_1_a2,
     author = {Soloff, Jake A. and M\'arquez, Rommy A. and Friedler, Louis M.},
     title = {Products of {Geodesic} {Graphs} and the {Geodetic} {Number} of {Products}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a2/}
}
TY  - JOUR
AU  - Soloff, Jake A.
AU  - Márquez, Rommy A.
AU  - Friedler, Louis M.
TI  - Products of Geodesic Graphs and the Geodetic Number of Products
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 35
EP  - 42
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a2/
LA  - en
ID  - DMGT_2015_35_1_a2
ER  - 
%0 Journal Article
%A Soloff, Jake A.
%A Márquez, Rommy A.
%A Friedler, Louis M.
%T Products of Geodesic Graphs and the Geodetic Number of Products
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 35-42
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a2/
%G en
%F DMGT_2015_35_1_a2
Soloff, Jake A.; Márquez, Rommy A.; Friedler, Louis M. Products of Geodesic Graphs and the Geodetic Number of Products. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 35-42. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a2/

[1] A.P. Santhakumaran and P. Titus, Geodesic graphs, Ars Combin. 99 (2011) 75-82.

[2] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).

[3] B. Brešar, M. Kovše and A. Tepeh Horvat, Geodetic sets in graphs in: M. Dehmer (Eds.), Structural Analysis of Complex Networks, Springer Science+Business Media, LLC, New York (2011) 197-218. doi:10.1007/978-0-8176-4789-6 8

[4] B. Brešar, S. Klavžar and A. Tepeh Horvat, On the geodetic number and related metric sets in Cartesian product graphs, Discrete Math. 308 (2008) 5555-5561. doi:10.1016/j.disc.2007.10.007

[5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling 17 (1993) 89-95. doi:10.1016/0895-7177(93)90259-2

[6] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6. doi:10.1002/net.10007

[7] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010) 3020-3031. doi:10.1016/j.camwa.2010.10.001

[8] T. Jiang, I. Pelayo and D. Pritikin, Geodesic convexity and Cartesian products in graphs, manuscript (2004).

[9] Y. Ye, C. Lu and Q. Liu, The geodetic numbers of Cartesian products of graphs, Math. Appl. 20 (2007) 158-163.