Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_1_a2, author = {Soloff, Jake A. and M\'arquez, Rommy A. and Friedler, Louis M.}, title = {Products of {Geodesic} {Graphs} and the {Geodetic} {Number} of {Products}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {35--42}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a2/} }
TY - JOUR AU - Soloff, Jake A. AU - Márquez, Rommy A. AU - Friedler, Louis M. TI - Products of Geodesic Graphs and the Geodetic Number of Products JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 35 EP - 42 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a2/ LA - en ID - DMGT_2015_35_1_a2 ER -
%0 Journal Article %A Soloff, Jake A. %A Márquez, Rommy A. %A Friedler, Louis M. %T Products of Geodesic Graphs and the Geodetic Number of Products %J Discussiones Mathematicae. Graph Theory %D 2015 %P 35-42 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a2/ %G en %F DMGT_2015_35_1_a2
Soloff, Jake A.; Márquez, Rommy A.; Friedler, Louis M. Products of Geodesic Graphs and the Geodetic Number of Products. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 35-42. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a2/
[1] A.P. Santhakumaran and P. Titus, Geodesic graphs, Ars Combin. 99 (2011) 75-82.
[2] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).
[3] B. Brešar, M. Kovše and A. Tepeh Horvat, Geodetic sets in graphs in: M. Dehmer (Eds.), Structural Analysis of Complex Networks, Springer Science+Business Media, LLC, New York (2011) 197-218. doi:10.1007/978-0-8176-4789-6 8
[4] B. Brešar, S. Klavžar and A. Tepeh Horvat, On the geodetic number and related metric sets in Cartesian product graphs, Discrete Math. 308 (2008) 5555-5561. doi:10.1016/j.disc.2007.10.007
[5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling 17 (1993) 89-95. doi:10.1016/0895-7177(93)90259-2
[6] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6. doi:10.1002/net.10007
[7] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010) 3020-3031. doi:10.1016/j.camwa.2010.10.001
[8] T. Jiang, I. Pelayo and D. Pritikin, Geodesic convexity and Cartesian products in graphs, manuscript (2004).
[9] Y. Ye, C. Lu and Q. Liu, The geodetic numbers of Cartesian products of graphs, Math. Appl. 20 (2007) 158-163.