Fractional Aspects of the Erdős-Faber-Lovász Conjecture
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 197-202
Cet article a éte moissonné depuis la source Library of Science
The Erdős-Faber-Lovász conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where the chromatic number is replaced by the fractional chromatic number. In this note we investigate similar fractional relaxations of the Erdős-Faber-Lovász conjecture, involving variations of the fractional chromatic number. We exhibit some relaxations that can be proved in the spirit of the Kahn-Seymour result, and others that are equivalent to the original conjecture.
Keywords:
Erdős-Faber-Lovász Conjecture, fractional chromatic number
@article{DMGT_2015_35_1_a15,
author = {Bosica, John and Tardif, Claude},
title = {Fractional {Aspects} of the {Erd\H{o}s-Faber-Lov\'asz} {Conjecture}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {197--202},
year = {2015},
volume = {35},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a15/}
}
Bosica, John; Tardif, Claude. Fractional Aspects of the Erdős-Faber-Lovász Conjecture. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 197-202. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a15/
[1] N.G. de Bruijn and P. Erdős, On a combinatorial problem, Nederl. Akad. Wetensch. Indag. Math 10 (1948) 421-423.
[2] P. Erdős, R.C. Mullin, V.T. Sos and D.R. Stinson, Finite linear spaces and projective planes, Discrete Math. 47 (1983) 49-62. doi:10.1016/0012-365X(83)90071-7
[3] J. Kahn, Coloring nearly-disjoint hypergraphs with n+o(n) colors, J. Combin. Theory (A) 59 (1992) 31-39. doi:10.1016/0097-3165(92)90096-D
[4] J. Kahn and P.D. Seymour, A fractional version of the Erdős-Faber-Lovász conjecture, Combinatorica 12 (1992) 155-160. doi:10.1007/BF01204719
[5] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1997).