On a Spanning $k$-Tree in which Specified Vertices Have Degree Less Than $k$
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 191-196

Voir la notice de l'article provenant de la source Library of Science

A k-tree is a tree with maximum degree at most k. In this paper, we give a degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than k. We denote by σ_k(G) the minimum value of the degree sum of k independent vertices in a graph G. Let k ≥ 3 and s ≥ 0 be integers, and suppose G is a connected graph and σ_k(G) ≥ |V (G)|+s−1. Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree less than k. The degree condition is sharp.
Keywords: spanning tree, degree bounded tree, degree sum condition
@article{DMGT_2015_35_1_a14,
     author = {Matsumura, Hajime},
     title = {On a {Spanning} $k${-Tree} in which {Specified} {Vertices} {Have} {Degree} {Less} {Than} $k$},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {191--196},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a14/}
}
TY  - JOUR
AU  - Matsumura, Hajime
TI  - On a Spanning $k$-Tree in which Specified Vertices Have Degree Less Than $k$
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 191
EP  - 196
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a14/
LA  - en
ID  - DMGT_2015_35_1_a14
ER  - 
%0 Journal Article
%A Matsumura, Hajime
%T On a Spanning $k$-Tree in which Specified Vertices Have Degree Less Than $k$
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 191-196
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a14/
%G en
%F DMGT_2015_35_1_a14
Matsumura, Hajime. On a Spanning $k$-Tree in which Specified Vertices Have Degree Less Than $k$. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 191-196. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a14/