Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_1_a14, author = {Matsumura, Hajime}, title = {On a {Spanning} $k${-Tree} in which {Specified} {Vertices} {Have} {Degree} {Less} {Than} $k$}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {191--196}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a14/} }
TY - JOUR AU - Matsumura, Hajime TI - On a Spanning $k$-Tree in which Specified Vertices Have Degree Less Than $k$ JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 191 EP - 196 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a14/ LA - en ID - DMGT_2015_35_1_a14 ER -
Matsumura, Hajime. On a Spanning $k$-Tree in which Specified Vertices Have Degree Less Than $k$. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 191-196. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a14/
[1] M.N. Ellingham, Y. Nam and H.-J. Voss, Connected (g, f)-factors, J. Graph Theory 39 (2002) 62-75. doi:10.1002/jgt.10019
[2] H. Enomoto and K. Ozeki, The independence number condition for the existence of a spanning f-tree, J. Graph Theory 65 (2010) 173-184. doi:10.1002/jgt.20471
[3] H. Matsuda and H. Matsumura, On a k-tree containing specified leaves in a graph, Graphs Combin. 22 (2006) 371-381. doi:10.1007/s00373-006-0660-5
[4] H.Matsuda and H. Matsumura, Degree conditions and degree bounded trees, Discrete Math. 309 (2009) 3653-3658. doi:10.1016/j.disc.2007.12.099
[5] V. Neumann-Lara and E. Rivera-Campo, Spanning trees with bounded degrees, Combinatorica 11 (1991) 55-61. doi:10.1007/BF01375473
[6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[7] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21-27. doi:10.2307/2308928
[8] S. Win, Existenz von gerüsten mit vorgeschriebenem maximalgrad in graphen, Abh. Math. Seminar Univ. Hamburg 43 (1975) 263-267. doi:10.1007/BF02995957
[9] S. Win, On a connection between the existence of k-trees and the toughness of a graph, Graphs Combin. 5 (1989) 201-205. doi:10.1007/BF01788671