Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_1_a13, author = {Caro, Yair and Lauri, Josef and Zarb, Christina}, title = {Constrained {Colouring} and {\ensuremath{\sigma}-Hypergraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {171--189}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a13/} }
TY - JOUR AU - Caro, Yair AU - Lauri, Josef AU - Zarb, Christina TI - Constrained Colouring and σ-Hypergraphs JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 171 EP - 189 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a13/ LA - en ID - DMGT_2015_35_1_a13 ER -
Caro, Yair; Lauri, Josef; Zarb, Christina. Constrained Colouring and σ-Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 171-189. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a13/
[1] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, I: General results, Discrete Math. 309 (2009) 4890-4902. doi:10.1016/j.disc.2008.04.019
[2] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees, Discrete Math. 309 (2009) 6391-6401. doi:10.1016/j.disc.2008.10.023
[3] C. Bujtás and Zs. Tuza, Color-bounded Hypergraphs, III: Model comparison, Appl. Anal. Discrete Math. 1 (2007) 36-55. doi:10.2298/AADM0701036B
[4] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, IV: Stable colorings of hypertrees, Discrete Math. 310 (2010) 1463-1474. doi:10.1016/j.disc.2009.07.014
[5] C. Bujtás, Zs. Tuza and V.I. Voloshin, Color-bounded Hypergraphs, V: Host graphs and subdivisions, Discuss. Math. Graph Theory 31 (2011) 223-238. doi:10.7151/dmgt.1541
[6] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, VI: Structural and functional jumps in complexity, Discrete Math. 313 (2013) 1965-1977. doi:10.1016/j.disc.2012.09.020
[7] Y. Caro and J. Lauri, Non-monochromatic non-rainbow colourings of σ-hypergraphs, Discrete Math. 318 (2014) 96-104. doi:10.1016/j.disc.2013.11.016
[8] Z. Dvořák, J. Kára, D. Král and O.Pangrác, Feasible sets of pattern hypergraphs, Electron. J. Combin. 17 (2010) #R15.
[9] L. Gionfriddo, Voloshin’s colourings of P3-designs, Discrete Math. 275 (2004) 137-149. doi:10.1016/S0012-365X(03)00104-3
[10] M. Hegyhát and Zs. Tuza, Colorability of mixed hypergraphs and their chromatic inversions, J. Combin. Optim. 25 (2013) 737-751. doi:10.1007/s10878-012-9559-7
[11] A. Jaffe, T. Moscibroda and S. Sen, On the price of equivocation in byzantine agreement, in: Proceedings of the 2012 ACM symposium on Principles of distributed computing (ACM, New York, 2012) 309-318. doi:10.1145/2332432.2332491
[12] T. Jiang, D.Mubayi, Zs. Tuza, V.I. Voloshin and D.B. West, The chromatic spectrum of mixed hypergraphs, Graphs Combin. 18 (2002) 309-318.
[13] S. Sen, New Systems and Algorithms for Scalable Fault Tolerance (Ph.D. Thesis, Princeton University, 2013).
[14] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms, and Applications (American Mathematical Society, 2002).