Constrained Colouring and σ-Hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 171-189.

Voir la notice de l'article provenant de la source Library of Science

A constrained colouring or, more specifically, an (α, β)-colouring of a hypergraph H, is an assignment of colours to its vertices such that no edge of H contains less than α or more than β vertices with different colours. This notion, introduced by Bujtás and Tuza, generalises both classical hypergraph colourings and more general Voloshin colourings of hypergraphs. In fact, for r-uniform hypergraphs, classical colourings correspond to (2, r)-colourings while an important instance of Voloshin colourings of r-uniform hypergraphs gives (2, r−1)-colourings. One intriguing aspect of all these colourings, not present in classical colourings, is that H can have gaps in its (α, β)-spectrum, that is, for k_1 lt; k_2 lt; k_3, H would be (α, β)-colourable using k_1 and using k_3 colours, but not using k_2 colours. In an earlier paper, the first two authors introduced, for σ being a partition of r, a very versatile type of r-uniform hypergraph which they called σ-hypergraphs. They showed that, by simple manipulation of the parameters of a σ-hypergraph H, one can obtain families of hypergraphs which have (2, r − 1)-colourings exhibiting various interesting chromatic properties. They also showed that, if the smallest part of σ is at least 2, then H will never have a gap in its (2, r − 1)-spectrum but, quite surprisingly, they found examples where gaps re-appear when α = β = 2. In this paper we extend many of the results of the first two authors to more general (α, β)-colourings, and we study the phenomenon of the disappearance and re-appearance of gaps and show that it is not just the behaviour of a particular example but we place it within the context of a more general study of constrained colourings of σ-hypergraphs.
Keywords: σ-hypergraphs, constrained colourings, hypergraph colourings
@article{DMGT_2015_35_1_a13,
     author = {Caro, Yair and Lauri, Josef and Zarb, Christina},
     title = {Constrained {Colouring} and {\ensuremath{\sigma}-Hypergraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {171--189},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a13/}
}
TY  - JOUR
AU  - Caro, Yair
AU  - Lauri, Josef
AU  - Zarb, Christina
TI  - Constrained Colouring and σ-Hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 171
EP  - 189
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a13/
LA  - en
ID  - DMGT_2015_35_1_a13
ER  - 
%0 Journal Article
%A Caro, Yair
%A Lauri, Josef
%A Zarb, Christina
%T Constrained Colouring and σ-Hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 171-189
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a13/
%G en
%F DMGT_2015_35_1_a13
Caro, Yair; Lauri, Josef; Zarb, Christina. Constrained Colouring and σ-Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 171-189. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a13/

[1] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, I: General results, Discrete Math. 309 (2009) 4890-4902. doi:10.1016/j.disc.2008.04.019

[2] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees, Discrete Math. 309 (2009) 6391-6401. doi:10.1016/j.disc.2008.10.023

[3] C. Bujtás and Zs. Tuza, Color-bounded Hypergraphs, III: Model comparison, Appl. Anal. Discrete Math. 1 (2007) 36-55. doi:10.2298/AADM0701036B

[4] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, IV: Stable colorings of hypertrees, Discrete Math. 310 (2010) 1463-1474. doi:10.1016/j.disc.2009.07.014

[5] C. Bujtás, Zs. Tuza and V.I. Voloshin, Color-bounded Hypergraphs, V: Host graphs and subdivisions, Discuss. Math. Graph Theory 31 (2011) 223-238. doi:10.7151/dmgt.1541

[6] C. Bujtás and Zs. Tuza, Color-bounded hypergraphs, VI: Structural and functional jumps in complexity, Discrete Math. 313 (2013) 1965-1977. doi:10.1016/j.disc.2012.09.020

[7] Y. Caro and J. Lauri, Non-monochromatic non-rainbow colourings of σ-hypergraphs, Discrete Math. 318 (2014) 96-104. doi:10.1016/j.disc.2013.11.016

[8] Z. Dvořák, J. Kára, D. Král and O.Pangrác, Feasible sets of pattern hypergraphs, Electron. J. Combin. 17 (2010) #R15.

[9] L. Gionfriddo, Voloshin’s colourings of P3-designs, Discrete Math. 275 (2004) 137-149. doi:10.1016/S0012-365X(03)00104-3

[10] M. Hegyhát and Zs. Tuza, Colorability of mixed hypergraphs and their chromatic inversions, J. Combin. Optim. 25 (2013) 737-751. doi:10.1007/s10878-012-9559-7

[11] A. Jaffe, T. Moscibroda and S. Sen, On the price of equivocation in byzantine agreement, in: Proceedings of the 2012 ACM symposium on Principles of distributed computing (ACM, New York, 2012) 309-318. doi:10.1145/2332432.2332491

[12] T. Jiang, D.Mubayi, Zs. Tuza, V.I. Voloshin and D.B. West, The chromatic spectrum of mixed hypergraphs, Graphs Combin. 18 (2002) 309-318.

[13] S. Sen, New Systems and Algorithms for Scalable Fault Tolerance (Ph.D. Thesis, Princeton University, 2013).

[14] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms, and Applications (American Mathematical Society, 2002).