Optimal Backbone Coloring of Split Graphs with Matching Backbones
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 157-169.

Voir la notice de l'article provenant de la source Library of Science

For a graph G with a given subgraph H, the backbone coloring is defined as the mapping c : V(G) → ℕ_+ such that |c(u) − c(v)| ≥ 2 for each edge u, v ∈ E(H) and |c(u) − c(v)| ≥ 1 for each edge u, v ∈ E(G). The backbone chromatic number BBC(G,H) is the smallest integer k such that there exists a backbone coloring with max_v∈V(G) c(v) = k. In this paper, we present the algorithm for the backbone coloring of split graphs with matching backbone.
Keywords: backbone coloring, split graphs, matching
@article{DMGT_2015_35_1_a12,
     author = {Turowski, Krzysztof},
     title = {Optimal {Backbone} {Coloring} of {Split} {Graphs} with {Matching} {Backbones}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {157--169},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a12/}
}
TY  - JOUR
AU  - Turowski, Krzysztof
TI  - Optimal Backbone Coloring of Split Graphs with Matching Backbones
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 157
EP  - 169
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a12/
LA  - en
ID  - DMGT_2015_35_1_a12
ER  - 
%0 Journal Article
%A Turowski, Krzysztof
%T Optimal Backbone Coloring of Split Graphs with Matching Backbones
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 157-169
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a12/
%G en
%F DMGT_2015_35_1_a12
Turowski, Krzysztof. Optimal Backbone Coloring of Split Graphs with Matching Backbones. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 157-169. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a12/

[1] P. Hammer and S. Földes, Split graphs, Congr. Numer. XIX (1977) 311-315.

[2] J. Miškuf, R. Skrekovski and M. Tancer, Backbone colorings of graphs with bounded degree, Discrete Appl. Math. 158 (2010) 534-542. doi:10.1016/j.dam.2009.11.015

[3] H. Broersma, F.V. Fomin, P.A. Golovach and G.J. Woeginger, Backbone colorings for graphs: tree and path backbones, J. Graph Theory 55 (2007) 137-152. doi:10.1002/jgt.20228

[4] H. Broersma, A general framework for coloring problems: old results, new results, and open problems, in: Combinatorial Geometry and Graph Theory: Indonesia-Japan Joint Conference, IJCCGGT 2003, Bandung, Indonesia, J. Akiyama, E.T. Baskoro, M. Kano (Ed(s)), (Springer, 2003) 65-79.

[5] R. Janczewski, On an interrelation between travelling salesman problem and T-coloring of graphs, Proceedings of the Sixth International Conference: Advanced Computer Systems, ACS 1999, Szczecin, Poland (1999) 23-25.