Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_1_a11, author = {Baudon, Olivier and Bensmail, Julien and Sopena, \'Eric}, title = {An {Oriented} {Version} of the 1-2-3 {Conjecture}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {141--156}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a11/} }
TY - JOUR AU - Baudon, Olivier AU - Bensmail, Julien AU - Sopena, Éric TI - An Oriented Version of the 1-2-3 Conjecture JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 141 EP - 156 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a11/ LA - en ID - DMGT_2015_35_1_a11 ER -
Baudon, Olivier; Bensmail, Julien; Sopena, Éric. An Oriented Version of the 1-2-3 Conjecture. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 141-156. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a11/
[1] B. Seamone, The 1-2-3 Conjecture and related problems: a survey, Technical Report, available at http://arxiv.org/abs/1211.5122 (2012).
[2] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).
[3] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, 1968).
[4] J. Skowronek-Kaziów, 1, 2 conjecture-the multiplicative version, Inform. Process. Lett. 107 (2008) 93-95. doi:10.1016/j.ipl.2008.01.006
[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, 1979).
[6] M. Kalkowski and M. Karoński and F. Pfender, Vertex-coloring edge-weightings: Towards the 1-2-3 conjecture, J. Combin. Theory (B) 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002
[7] T. Bartnicki, J. Grytczuk and S. Niwczyk, Weight choosability of graphs, J. Graph Theory 60 (2009) 242-256. doi:10.1002/jgt.20354
[8] M. Borowiecki, J. Grytczuk and M. Pilśniak, Coloring chip configurations on graphs and digraphs, Inform. Process. Lett. 112 (2012) 1-4. doi:10.1016/j.ipl.2011.09.011
[9] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone and B. Stevens, Digraphs are 2-weight choosable, Electron. J. Combin. 18 (2011) #1.
[10] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001
[11] O. Baudon, J. Bensmail, J. Przyby lo and M. Woźniak, On decomposing regular graphs into locally irregular subgraphs, Preprint MD 065 (2012), available at http://www.ii.uj.edu.pl/preMD/index.php.
[12] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244. doi:10.1016/j.jctb.2005.01.001