An Oriented Version of the 1-2-3 Conjecture
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 141-156.

Voir la notice de l'article provenant de la source Library of Science

The well-known 1-2-3 Conjecture addressed by Karoński, Luczak and Thomason asks whether the edges of every undirected graph G with no isolated edge can be assigned weights from 1, 2, 3 so that the sum of incident weights at each vertex yields a proper vertex-colouring of G. In this work, we consider a similar problem for oriented graphs. We show that the arcs of every oriented graph G can be assigned weights from 1, 2, 3 so that every two adjacent vertices of G receive distinct sums of outgoing weights. This result is tight in the sense that some oriented graphs do not admit such an assignment using the weights from 1, 2 only. We finally prove that deciding whether two weights are sufficient for a given oriented graph is an 𝖭𝖯-complete problem. These results also hold for product or list versions of this problem.
Keywords: oriented graph, neighbour-sum-distinguishing arc-weighting, complexity, 1-2-3 Conjecture
@article{DMGT_2015_35_1_a11,
     author = {Baudon, Olivier and Bensmail, Julien and Sopena, \'Eric},
     title = {An {Oriented} {Version} of the 1-2-3 {Conjecture}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {141--156},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a11/}
}
TY  - JOUR
AU  - Baudon, Olivier
AU  - Bensmail, Julien
AU  - Sopena, Éric
TI  - An Oriented Version of the 1-2-3 Conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 141
EP  - 156
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a11/
LA  - en
ID  - DMGT_2015_35_1_a11
ER  - 
%0 Journal Article
%A Baudon, Olivier
%A Bensmail, Julien
%A Sopena, Éric
%T An Oriented Version of the 1-2-3 Conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 141-156
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a11/
%G en
%F DMGT_2015_35_1_a11
Baudon, Olivier; Bensmail, Julien; Sopena, Éric. An Oriented Version of the 1-2-3 Conjecture. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 141-156. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a11/

[1] B. Seamone, The 1-2-3 Conjecture and related problems: a survey, Technical Report, available at http://arxiv.org/abs/1211.5122 (2012).

[2] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).

[3] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, 1968).

[4] J. Skowronek-Kaziów, 1, 2 conjecture-the multiplicative version, Inform. Process. Lett. 107 (2008) 93-95. doi:10.1016/j.ipl.2008.01.006

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, 1979).

[6] M. Kalkowski and M. Karoński and F. Pfender, Vertex-coloring edge-weightings: Towards the 1-2-3 conjecture, J. Combin. Theory (B) 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002

[7] T. Bartnicki, J. Grytczuk and S. Niwczyk, Weight choosability of graphs, J. Graph Theory 60 (2009) 242-256. doi:10.1002/jgt.20354

[8] M. Borowiecki, J. Grytczuk and M. Pilśniak, Coloring chip configurations on graphs and digraphs, Inform. Process. Lett. 112 (2012) 1-4. doi:10.1016/j.ipl.2011.09.011

[9] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone and B. Stevens, Digraphs are 2-weight choosable, Electron. J. Combin. 18 (2011) #1.

[10] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001

[11] O. Baudon, J. Bensmail, J. Przyby lo and M. Woźniak, On decomposing regular graphs into locally irregular subgraphs, Preprint MD 065 (2012), available at http://www.ii.uj.edu.pl/preMD/index.php.

[12] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244. doi:10.1016/j.jctb.2005.01.001