Remarks on Dynamic Monopolies with Given Average Thresholds
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 133-140.

Voir la notice de l'article provenant de la source Library of Science

Dynamic monopolies in graphs have been studied as a model for spreading processes within networks. Together with their dual notion, the generalized degenerate sets, they form the immediate generalization of the classical notions of vertex covers and independent sets in a graph. We present results concerning dynamic monopolies in graphs of given average threshold values extending and generalizing previous results of Khoshkhah et al. [On dynamic monopolies of graphs: The average and strict majority thresholds, Discrete Optimization 9 (2012) 77-83] and Zaker [Generalized degeneracy, dynamic monopolies and maximum degenerate subgraphs, Discrete Appl. Math. 161 (2013) 2716-2723].
Keywords: dynamic monopoly, degenerate set, vertex cover, independent set
@article{DMGT_2015_35_1_a10,
     author = {Centeno, Carmen C. and Rautenbach, Dieter},
     title = {Remarks on {Dynamic} {Monopolies} with {Given} {Average} {Thresholds}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {133--140},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a10/}
}
TY  - JOUR
AU  - Centeno, Carmen C.
AU  - Rautenbach, Dieter
TI  - Remarks on Dynamic Monopolies with Given Average Thresholds
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 133
EP  - 140
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a10/
LA  - en
ID  - DMGT_2015_35_1_a10
ER  - 
%0 Journal Article
%A Centeno, Carmen C.
%A Rautenbach, Dieter
%T Remarks on Dynamic Monopolies with Given Average Thresholds
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 133-140
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a10/
%G en
%F DMGT_2015_35_1_a10
Centeno, Carmen C.; Rautenbach, Dieter. Remarks on Dynamic Monopolies with Given Average Thresholds. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 133-140. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a10/

[1] N. Alon, J. Kahn and P.D. Seymour, Large induced degenerate subgraphs, Graphs Combin. 3 (1987) 203-211. doi:10.1007/BF01788542

[2] N. Alon, D. Mubayi and R. Thomas, Large induced forests in sparse graphs, J. Graph Theory 38 (2001) 113-123. doi:10.1002/jgt.1028

[3] P. Borowiecki, F. G¨oring, J. Harant and D. Rautenbach, The potential of greed for independence, J. Graph Theory 71 (2012) 245-259. doi:10.1002/jgt.20644

[4] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197. doi:10.1017/S030500410002168X

[5] Y. Caro, New results on the independence number, Technical Report, Tel-Aviv University, 1979.

[6] K. Khoshkhah, H. Soltani and M. Zaker, On dynamic monopolies of graphs: The average and strict majority thresholds, Discrete Optimization 9 (2012) 77-83. doi:10.1016/j.disopt.2012.02.001

[7] V.K. Wei, A lower bound on the stability number of a simple graph, Technical Memorandum, TM 81-11217-9, Bell Laboratories, 1981.

[8] M. Zaker, Generalized degeneracy, dynamic monopolies and maximum degenerate subgraphs, Discrete Appl. Math. 161 (2013) 2716-2723. doi:10.1016/j.dam.2013.04.012