Harary Index of Product Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 17-33 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × K_m_0,m_1,...,m_r−1 and the strong product G⊠K_m_0,m_1,...,m_r−1, where K_m_0,m_1,...,m_r−1 is the complete multipartite graph with partite sets of sizes m_0,m_1, . . .,m_r−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula for the Harary index of the wreath product G ○ G′ is obtained.
Keywords: tensor product, strong product, wreath product, Harary index
@article{DMGT_2015_35_1_a1,
     author = {Pattabiraman, K. and Paulraja, P.},
     title = {Harary {Index} of {Product} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {17--33},
     year = {2015},
     volume = {35},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/}
}
TY  - JOUR
AU  - Pattabiraman, K.
AU  - Paulraja, P.
TI  - Harary Index of Product Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 17
EP  - 33
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/
LA  - en
ID  - DMGT_2015_35_1_a1
ER  - 
%0 Journal Article
%A Pattabiraman, K.
%A Paulraja, P.
%T Harary Index of Product Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 17-33
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/
%G en
%F DMGT_2015_35_1_a1
Pattabiraman, K.; Paulraja, P. Harary Index of Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 17-33. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/

[1] N. Alon and E. Lubetzky, Independent set in tensor graph powers, J. Graph Theory 54 (2007) 73-87. doi:10.1002/jgt.20194

[2] A.M. Assaf, Modified group divisible designs, Ars Combin. 29 (1990) 13-20.

[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Second Edition (Springer, New York, 2012). doi:10.1007/978-1-4614-4529-6

[4] B. Brešar, W. Imrich, S. Klavžar and B. Zmazek, Hypercubes as direct products, SIAM J. Discrete Math. 18 (2005) 778-786. doi:10.1137/S0895480103438358

[5] K.C. Das, B. Zhou and N. Trinajsti´c, Bounds on Harary index, J. Math. Chem. 46 (2009) 1377-1393. doi:10.1007/s10910-009-9522-8

[6] J. Devillers and A.T. Balaban, (Eds), Topological Indices and Related Descriptors in QSAR and QSPR (Gordon and Breach, Amsterdam, 1999).

[7] M.V. Diudea, Indices of reciprocal properties or Harary indices, J. Chem. Inf. Comput. Sci. 37 (1997) 292-299. doi:10.1021/ci960037w

[8] L. Feng and A. Ilić, Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number, Appl. Math. Lett. 23 (2010) 943-948. doi:10.1016/j.aml.2010.04.017

[9] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986). doi:10.1007/978-3-642-70982-1

[10] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.

[11] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (CRC Press, New York, 2011).

[12] M. Hoji, Z. Luo and E. Vumar, Wiener and vertex PI indices of Kronecker products of graphs, Discrete Appl. Math. 158 (2010) 1848-1855. doi:10.1016/j.dam.2010.06.009

[13] O. Ivanciuć, T.S. Balaban and A.T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309-318. doi:10.1007/BF01164642

[14] M.H. Khalifeh, H. Youseri-Azari and A.R. Ashrafi, Vertex and edge PI indices of Cartesian product of graphs, Discrete Appl. Math. 156 (2008) 1780-1789. doi:10.1016/j.dam.2007.08.041

[15] B. Lučić, A. Miličević, S. Nikolić and N. Trinajstić, Harary index-twelve years later, Croat. Chem. Acta 75 (2002) 847-868.

[16] I. Lukovits, Wiener-type graph invariants, in: M.V. Diudea (Ed.), QSPR/QSAR Studies by Molecular Descriptors (Nova Science Publishers, Huntington, New York, 2001).

[17] A. Mamut and E. Vumar, Vertex vulnerability parameters of Kronecker products of complete graphs, Inform. Process. Lett. 106 (2008) 258-262. doi:10.1016/j.ipl.2007.12.002

[18] D.E. Needham, I.C. Wei and P.G. Seybold, Molecular modeling of the physical prop- erties of alkanes, J. Amer. Chem. Soc. 110 (1988) 4186-4194. doi:10.1021/ja00221a015

[19] K. Pattabiraman and P. Paulraja, On some topological indices of the tensor product of graphs, Discrete Appl. Math. 160 (2012) 267-279. doi:10.1016/j.dam.2011.10.020

[20] K. Pattabiraman and P. Paulraja, Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Theory 32 (2012) 749-769. doi:10.7151/dmgt.1647

[21] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of a path and a cycle, Discuss. Math. Graph Theory 31 (2011) 737-751. doi:10.7151/dmgt.1576

[22] D. Plavsić, S. Nikolić, N. Trinajstić and Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.

[23] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000).

[24] N. Trinajstić, S. Nikolić, S.C. Basak and I. Lukovits, Distance indices and their hyper-counterparts: Intercorrelation and use in the structure-property modeling, SAR and QSAR in Environmental Research 12 (2001) 31-54. doi:10.1080/10629360108035370

[25] K. Xu and K.C. Das, On Harary index of graphs, Discrete. Appl. Math. 159 (2011) 1631-1640. doi:10.1016/j.dam.2011.06.003

[26] H. Yousefi-Azari, M.H. Khalifeh and A.R. Ashrafi, Calculating the edge Wiener and edge Szeged indices of graphs, J. Comput. Appl. Math. 235 (2011) 4866-4870. doi:10.1016/j.cam.2011.02.019

[27] B. Zhou, Z.Du and N. Trinajstić, Harary index of landscape graphs, Int. J. Chem. Model. 1 (2008) 35-44.

[28] B. Zhou, X. Cai and N. Trinajstić, On the Harary index, J. Math. Chem. 44 (2008) 611-618. doi:10.1007/s10910-007-9339-2