Harary Index of Product Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 17-33

Voir la notice de l'article provenant de la source Library of Science

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × K_m_0,m_1,...,m_r−1 and the strong product G⊠K_m_0,m_1,...,m_r−1, where K_m_0,m_1,...,m_r−1 is the complete multipartite graph with partite sets of sizes m_0,m_1, . . .,m_r−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula for the Harary index of the wreath product G ○ G′ is obtained.
Keywords: tensor product, strong product, wreath product, Harary index
@article{DMGT_2015_35_1_a1,
     author = {Pattabiraman, K. and Paulraja, P.},
     title = {Harary {Index} of {Product} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {17--33},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/}
}
TY  - JOUR
AU  - Pattabiraman, K.
AU  - Paulraja, P.
TI  - Harary Index of Product Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 17
EP  - 33
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/
LA  - en
ID  - DMGT_2015_35_1_a1
ER  - 
%0 Journal Article
%A Pattabiraman, K.
%A Paulraja, P.
%T Harary Index of Product Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 17-33
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/
%G en
%F DMGT_2015_35_1_a1
Pattabiraman, K.; Paulraja, P. Harary Index of Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 17-33. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/