Harary Index of Product Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 17-33.

Voir la notice de l'article provenant de la source Library of Science

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × K_m_0,m_1,...,m_r−1 and the strong product G⊠K_m_0,m_1,...,m_r−1, where K_m_0,m_1,...,m_r−1 is the complete multipartite graph with partite sets of sizes m_0,m_1, . . .,m_r−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula for the Harary index of the wreath product G ○ G′ is obtained.
Keywords: tensor product, strong product, wreath product, Harary index
@article{DMGT_2015_35_1_a1,
     author = {Pattabiraman, K. and Paulraja, P.},
     title = {Harary {Index} of {Product} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {17--33},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/}
}
TY  - JOUR
AU  - Pattabiraman, K.
AU  - Paulraja, P.
TI  - Harary Index of Product Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 17
EP  - 33
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/
LA  - en
ID  - DMGT_2015_35_1_a1
ER  - 
%0 Journal Article
%A Pattabiraman, K.
%A Paulraja, P.
%T Harary Index of Product Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 17-33
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/
%G en
%F DMGT_2015_35_1_a1
Pattabiraman, K.; Paulraja, P. Harary Index of Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 17-33. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a1/

[1] N. Alon and E. Lubetzky, Independent set in tensor graph powers, J. Graph Theory 54 (2007) 73-87. doi:10.1002/jgt.20194

[2] A.M. Assaf, Modified group divisible designs, Ars Combin. 29 (1990) 13-20.

[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Second Edition (Springer, New York, 2012). doi:10.1007/978-1-4614-4529-6

[4] B. Brešar, W. Imrich, S. Klavžar and B. Zmazek, Hypercubes as direct products, SIAM J. Discrete Math. 18 (2005) 778-786. doi:10.1137/S0895480103438358

[5] K.C. Das, B. Zhou and N. Trinajsti´c, Bounds on Harary index, J. Math. Chem. 46 (2009) 1377-1393. doi:10.1007/s10910-009-9522-8

[6] J. Devillers and A.T. Balaban, (Eds), Topological Indices and Related Descriptors in QSAR and QSPR (Gordon and Breach, Amsterdam, 1999).

[7] M.V. Diudea, Indices of reciprocal properties or Harary indices, J. Chem. Inf. Comput. Sci. 37 (1997) 292-299. doi:10.1021/ci960037w

[8] L. Feng and A. Ilić, Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number, Appl. Math. Lett. 23 (2010) 943-948. doi:10.1016/j.aml.2010.04.017

[9] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986). doi:10.1007/978-3-642-70982-1

[10] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.

[11] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (CRC Press, New York, 2011).

[12] M. Hoji, Z. Luo and E. Vumar, Wiener and vertex PI indices of Kronecker products of graphs, Discrete Appl. Math. 158 (2010) 1848-1855. doi:10.1016/j.dam.2010.06.009

[13] O. Ivanciuć, T.S. Balaban and A.T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309-318. doi:10.1007/BF01164642

[14] M.H. Khalifeh, H. Youseri-Azari and A.R. Ashrafi, Vertex and edge PI indices of Cartesian product of graphs, Discrete Appl. Math. 156 (2008) 1780-1789. doi:10.1016/j.dam.2007.08.041

[15] B. Lučić, A. Miličević, S. Nikolić and N. Trinajstić, Harary index-twelve years later, Croat. Chem. Acta 75 (2002) 847-868.

[16] I. Lukovits, Wiener-type graph invariants, in: M.V. Diudea (Ed.), QSPR/QSAR Studies by Molecular Descriptors (Nova Science Publishers, Huntington, New York, 2001).

[17] A. Mamut and E. Vumar, Vertex vulnerability parameters of Kronecker products of complete graphs, Inform. Process. Lett. 106 (2008) 258-262. doi:10.1016/j.ipl.2007.12.002

[18] D.E. Needham, I.C. Wei and P.G. Seybold, Molecular modeling of the physical prop- erties of alkanes, J. Amer. Chem. Soc. 110 (1988) 4186-4194. doi:10.1021/ja00221a015

[19] K. Pattabiraman and P. Paulraja, On some topological indices of the tensor product of graphs, Discrete Appl. Math. 160 (2012) 267-279. doi:10.1016/j.dam.2011.10.020

[20] K. Pattabiraman and P. Paulraja, Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Theory 32 (2012) 749-769. doi:10.7151/dmgt.1647

[21] K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of a path and a cycle, Discuss. Math. Graph Theory 31 (2011) 737-751. doi:10.7151/dmgt.1576

[22] D. Plavsić, S. Nikolić, N. Trinajstić and Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.

[23] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000).

[24] N. Trinajstić, S. Nikolić, S.C. Basak and I. Lukovits, Distance indices and their hyper-counterparts: Intercorrelation and use in the structure-property modeling, SAR and QSAR in Environmental Research 12 (2001) 31-54. doi:10.1080/10629360108035370

[25] K. Xu and K.C. Das, On Harary index of graphs, Discrete. Appl. Math. 159 (2011) 1631-1640. doi:10.1016/j.dam.2011.06.003

[26] H. Yousefi-Azari, M.H. Khalifeh and A.R. Ashrafi, Calculating the edge Wiener and edge Szeged indices of graphs, J. Comput. Appl. Math. 235 (2011) 4866-4870. doi:10.1016/j.cam.2011.02.019

[27] B. Zhou, Z.Du and N. Trinajstić, Harary index of landscape graphs, Int. J. Chem. Model. 1 (2008) 35-44.

[28] B. Zhou, X. Cai and N. Trinajstić, On the Harary index, J. Math. Chem. 44 (2008) 611-618. doi:10.1007/s10910-007-9339-2