Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_4_a8, author = {Cranston, Daniel W. and Jahanbekam, Sogol and West, Douglas B.}, title = {The {1,2,3-Conjecture} and {1,2-Conjecture} for sparse graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {769--799}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a8/} }
TY - JOUR AU - Cranston, Daniel W. AU - Jahanbekam, Sogol AU - West, Douglas B. TI - The 1,2,3-Conjecture and 1,2-Conjecture for sparse graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 769 EP - 799 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a8/ LA - en ID - DMGT_2014_34_4_a8 ER -
%0 Journal Article %A Cranston, Daniel W. %A Jahanbekam, Sogol %A West, Douglas B. %T The 1,2,3-Conjecture and 1,2-Conjecture for sparse graphs %J Discussiones Mathematicae. Graph Theory %D 2014 %P 769-799 %V 34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a8/ %G en %F DMGT_2014_34_4_a8
Cranston, Daniel W.; Jahanbekam, Sogol; West, Douglas B. The 1,2,3-Conjecture and 1,2-Conjecture for sparse graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 769-799. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a8/
[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed and A. Thomason, Vertex-colouring edge-weightings, Combinatorica 27 (2007) 1-12. doi:10.1007/s00493-007-0041-6
[2] L. Addario-Berry, K. Dalal and B.A. Reed, Degree constrained subgraphs, Discrete Appl. Math. 156 (2008) 1168-1174. doi:10.1016/j.dam.2007.05.059
[3] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999) 7-29. doi:10.1017/S0963548398003411
[4] T. Bartnicki, J. Grytczuk and S. Niwczyk, Weight choosability of graphs, J. Graph Theory 60 (2009) 242-256. doi:10.1002/jgt.20354
[5] M. Kalkowski, A note on the 1, 2-conjecture, submitted (also in Ph.D. Thesis, 2009).
[6] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory (B) 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002
[7] M. Karónski, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001
[8] J. Przybyło and M. Woźniak, On a 1, 2 conjecture, Discrete Math. Theoret. Comput. Sci. 12 (2010) 101-108.
[9] B. Seamone, The 1-2-3 conjecture and related problems: a survey, submitted (http://arxiv.org/abs/1211.5122).
[10] T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008) 581-587. doi:10.1007/s11464-008-0041-x
[11] T.-L. Wong, X. Zhu and D. Yang, List total weighting of graphs, in: G.O.H. Katona, A. Schrijver, T. Szőnyi and G. Sági, Eds., Fete of Combinatorics and Computer Science, Bolyai Soc. Math. Stud., vol. 20 (Springer, Berlin, Heidelberg, 2010) 337-353. doi:10.1007/978-3-642-13580-4 13
[12] T.-L. Wong and X. Zhu, Total weight choosability of graphs, J. Graph Theory 66 (2011) 198-212. doi:10.1002/jgt.20500
[13] T.-L. Wong and X. Zhu, Every graph is (2, 3)-choosable, submitted.