Pairs of edges as chords and as cut-edges
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 673-681.

Voir la notice de l'article provenant de la source Library of Science

Several authors have studied the graphs for which every edge is a chord of a cycle; among 2-connected graphs, one characterization is that the deletion of one vertex never creates a cut-edge. Two new results: among 3-connected graphs with minimum degree at least 4, every two adjacent edges are chords of a common cycle if and only if deleting two vertices never creates two adjacent cut-edges; among 4-connected graphs, every two edges are always chords of a common cycle.
Keywords: cycle, chord, cut-edge
@article{DMGT_2014_34_4_a1,
     author = {McKee, Terry A.},
     title = {Pairs of edges as chords and as cut-edges},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {673--681},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a1/}
}
TY  - JOUR
AU  - McKee, Terry A.
TI  - Pairs of edges as chords and as cut-edges
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 673
EP  - 681
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a1/
LA  - en
ID  - DMGT_2014_34_4_a1
ER  - 
%0 Journal Article
%A McKee, Terry A.
%T Pairs of edges as chords and as cut-edges
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 673-681
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a1/
%G en
%F DMGT_2014_34_4_a1
McKee, Terry A. Pairs of edges as chords and as cut-edges. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 673-681. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a1/

[1] T. Denley and H. Wu, A generalization of a theorem of Dirac, J. Combin. Theory (B) 82 (2001) 322-326. doi:10.1006/jctb.2001.2041

[2] G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960) 61-85. doi:10.1002/mana.19600220107

[3] R.J. Faudree, Survey of results on k-ordered graphs, Discrete Math. 229 (2001) 73-87. doi:10.1016/S0012-365X(00)00202-8

[4] W. Gu, X. Jia and H. Wu, Chords in graphs, Australas. J. Combin. 32 (2005) 117-124.

[5] L. Lovász, Combinatorial Problems and Exercises, Corrected reprint of the 1993 Second Edition (AMS Chelsea Publishing, Providence, 2007).

[6] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.

[7] T.A. McKee, Chords and connectivity, Bull. Inst. Combin. Appl. 47 (2006) 48-52.

[8] M.D. Plummer, On path properties versus connectivity I, in: Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, R.C. Mullin, et al. (Ed(s)), (Louisiana State Univ., Baton Rouge, 1971) 457-472.