Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_3_a9, author = {Pang, Shiyou and Miao, Lianying and Song, Wenyao and Miao, Zhengke}, title = {On the independence number of edge chromatic critical graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {577--584}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a9/} }
TY - JOUR AU - Pang, Shiyou AU - Miao, Lianying AU - Song, Wenyao AU - Miao, Zhengke TI - On the independence number of edge chromatic critical graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 577 EP - 584 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a9/ LA - en ID - DMGT_2014_34_3_a9 ER -
%0 Journal Article %A Pang, Shiyou %A Miao, Lianying %A Song, Wenyao %A Miao, Zhengke %T On the independence number of edge chromatic critical graphs %J Discussiones Mathematicae. Graph Theory %D 2014 %P 577-584 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a9/ %G en %F DMGT_2014_34_3_a9
Pang, Shiyou; Miao, Lianying; Song, Wenyao; Miao, Zhengke. On the independence number of edge chromatic critical graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 577-584. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a9/
[1] G. Brinkmann, S.A. Choudum, S. Grünewald and E. Steffen, Bounds for the independence number of critical graphs, Bull. London Math. Soc. 32 (2000) 137-140. doi:10.1112/S0024609399006645
[2] S. Grünewald and E. Steffen, Independent sets and 2-factors in edge chromatic critical graphs, J. Graph Theory 45 (2004) 113-118. doi:10.1002/jgt.10141
[3] R. Luo and Y. Zhao, A note on Vizing’s independence number conjecture of edge chromatic critical graphs, Discrete Math. 306 (2006) 1788-1790. doi:10.1016/j.disc.2006.03.040
[4] R. Luo and Y. Zhao, An application of Vizing and Vizing-like adjacency lemmas to Vizing’s independence number conjecture of edge chromatic critical graphs, Discrete Math. 309 (2009) 2925-2929. doi:10.1016/j.disc.2008.06.019
[5] R. Luo, L.Y. Miao and Y. Zhao, The size of edge chromatic critical graphs with maximum degree 6, J. Graph Theory 60 (2009) 149-171. doi:10.1002/jgt.20351
[6] L.Y. Miao, On the independence number of edge chromatic critical graphs, Ars Combin. 98 (2011) 471-481.
[7] D.P. Sanders and Y. Zhao, Planar graphs with maximum degree seven are Class I, J. Combin. Theory (B) 83 (2001) 201-212. doi:0.1006/jctb.2001.2047
[8] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).
[9] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117-134, Russian Math. Surveys 23 (1968) 125-142. doi:10.1070/RM1968v023n06ABEH001252
[10] D.R. Woodall, The independence number of an edge chromatic critical graph, J. Graph Theory 66 (2011) 98-103. doi:10.1002/jgt.20493
[11] D.R. Woodall, The average degree of an edge-chromatic critical graph II, J. Graph Theory 56 (2007) 194-218. doi:10.1002/jgt.20259
[12] H.P. Yap, Some Topics in Graph Theory, London Math. Soc. Lecture Notes Ser. Vol. 108 (Cambridge Univ. Press, 1986). doi:10.1017/CBO9780511662065
[13] L. Zhang, Every planar graph with maximum degree 7 is of class 1, Graphs Combin. 16 (2000) 467-495. doi:10.1007/s003730070009