On the independence number of edge chromatic critical graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 577-584

Voir la notice de l'article provenant de la source Library of Science

In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree △ and independence number α(G), α(G) ≤ |V|/2. It is known that α(G) lt; 3∆−2/5∆−2|V|. In this paper we improve this bound when △≥4. Our precise result depends on the number n_2 of 2-vertices in G, but in particular we prove that α(G) ≤3∆−3/5∆−3|V| when △≥5 and n_2≤2(△− 1).
Keywords: edge coloring, edge-chromatic critical graphs, independence number
@article{DMGT_2014_34_3_a9,
     author = {Pang, Shiyou and Miao, Lianying and Song, Wenyao and Miao, Zhengke},
     title = {On the independence number of edge chromatic critical graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {577--584},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a9/}
}
TY  - JOUR
AU  - Pang, Shiyou
AU  - Miao, Lianying
AU  - Song, Wenyao
AU  - Miao, Zhengke
TI  - On the independence number of edge chromatic critical graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 577
EP  - 584
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a9/
LA  - en
ID  - DMGT_2014_34_3_a9
ER  - 
%0 Journal Article
%A Pang, Shiyou
%A Miao, Lianying
%A Song, Wenyao
%A Miao, Zhengke
%T On the independence number of edge chromatic critical graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 577-584
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a9/
%G en
%F DMGT_2014_34_3_a9
Pang, Shiyou; Miao, Lianying; Song, Wenyao; Miao, Zhengke. On the independence number of edge chromatic critical graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 577-584. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a9/