5-stars of low weight in normal plane maps with minimum degree 5
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 539-546

Voir la notice de l'article provenant de la source Library of Science

It is known that there are normal plane maps M_5 with minimum degree 5 such that the minimum degree-sum w(S_5) of 5-stars at 5-vertices is arbitrarily large. In 1940, Lebesgue showed that if an M_5 has no 4-stars of cyclic type (5, 6, 6, 5) centered at 5-vertices, then w(S_5) ≤ 68. We improve this bound of 68 to 55 and give a construction of a (5, 6, 6, 5)-free M_5 with w(S_5) = 48.
Keywords: graph, plane map, vertex degree, weight, light subgraph
@article{DMGT_2014_34_3_a5,
     author = {Borodin, Oleg V. and Ivanova, Anna O. and Jensen, Tommy R.},
     title = {5-stars of low weight in normal plane maps with minimum degree 5},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {539--546},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a5/}
}
TY  - JOUR
AU  - Borodin, Oleg V.
AU  - Ivanova, Anna O.
AU  - Jensen, Tommy R.
TI  - 5-stars of low weight in normal plane maps with minimum degree 5
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 539
EP  - 546
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a5/
LA  - en
ID  - DMGT_2014_34_3_a5
ER  - 
%0 Journal Article
%A Borodin, Oleg V.
%A Ivanova, Anna O.
%A Jensen, Tommy R.
%T 5-stars of low weight in normal plane maps with minimum degree 5
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 539-546
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a5/
%G en
%F DMGT_2014_34_3_a5
Borodin, Oleg V.; Ivanova, Anna O.; Jensen, Tommy R. 5-stars of low weight in normal plane maps with minimum degree 5. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 539-546. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a5/