Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_3_a5, author = {Borodin, Oleg V. and Ivanova, Anna O. and Jensen, Tommy R.}, title = {5-stars of low weight in normal plane maps with minimum degree 5}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {539--546}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a5/} }
TY - JOUR AU - Borodin, Oleg V. AU - Ivanova, Anna O. AU - Jensen, Tommy R. TI - 5-stars of low weight in normal plane maps with minimum degree 5 JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 539 EP - 546 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a5/ LA - en ID - DMGT_2014_34_3_a5 ER -
%0 Journal Article %A Borodin, Oleg V. %A Ivanova, Anna O. %A Jensen, Tommy R. %T 5-stars of low weight in normal plane maps with minimum degree 5 %J Discussiones Mathematicae. Graph Theory %D 2014 %P 539-546 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a5/ %G en %F DMGT_2014_34_3_a5
Borodin, Oleg V.; Ivanova, Anna O.; Jensen, Tommy R. 5-stars of low weight in normal plane maps with minimum degree 5. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 539-546. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a5/
[1] J. Balogh, M. Kochol, A. Pluhár and X. Yu, Covering planar graphs with forests, J. Combin. Theory (B) 94 (2005) 147-158. doi:10.1016/j.jctb.2004.12.002
[2] O.V. Borodin, Solution of Kotzig’s and Grünbaum’s problems on the separability of a cycle in a planar graph, Mat. Zametki 46(5) (1989) 9-12 (in Russian).
[3] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159-164. doi:10.7151/dmgt.1071
[4] O.V. Borodin, H.J. Broersma, A.N. Glebov and J. Van den Heuvel, The structure of plane triangulations in terms of clusters and stars, Diskretn. Anal. Issled. Oper. Ser. 1 8(2) (2001) 15-39 (in Russian).
[5] O.V. Borodin, H.J. Broersma, A.N. Glebov and J. Van den Heuvel, Minimal degrees and chromatic numbers of squares of planar graphs, Diskretn. Anal. Issled. Oper. Ser. 1 8(4) (2001) 9-33 (in Russian).
[6] O.V. Borodin and A.O. Ivanova, Describing (d − 2)-stars at d-vertices, d≤ 5, in normal plane maps, Discrete Math. 313 (2013) 1700-1709. doi:10.1016/j.disc.2013.04.026
[7] O.V. Borodin and A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710-1714. doi:10.1016/j.disc.2013.04.025
[8] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236. doi:10.2307/2370527
[9] J. Harant and S. Jendrol’, On the existence of specific stars in planar graphs, Graphs Combin. 23 (2007) 529-543. doi:10.1007/s00373-007-0747-7
[10] J. Van den Heuvel and S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003) 110-124. doi:10.1002/jgt.10077
[11] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs of minimal degree five, Discuss. Math. Graph Theory 16 (1996) 207-217. doi:10.7151/dmgt.1035
[12] S. Jendrol’ and T. Madaras, Note on an existence of small degree vertices with at most one big degree neighbour in planar graphs, Tatra Mt. Math. Publ. 30 (2005) 149-153.
[13] A. Kotzig, From the theory of eulerian polyhedra, Mat. Čas. 13 (1963) 20-34 (in Russian).
[14] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19 (1940) 27-43.
[15] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426. doi:10.1007/BF01444968