The domination number of $K_n^3$
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 629-632.

Voir la notice de l'article provenant de la source Library of Science

Let K_n^3 denote the Cartesian product K_n□K_n□K_n, where K_n is the complete graph on n vertices. We show that the domination number of K_n^3 is ⌈n^2/2⌉.
Keywords: Cartesian product, dominating set, domination number
@article{DMGT_2014_34_3_a14,
     author = {Georges, John and Lin, Jianwei and Mauro, David},
     title = {The domination number of $K_n^3$},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {629--632},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a14/}
}
TY  - JOUR
AU  - Georges, John
AU  - Lin, Jianwei
AU  - Mauro, David
TI  - The domination number of $K_n^3$
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 629
EP  - 632
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a14/
LA  - en
ID  - DMGT_2014_34_3_a14
ER  - 
%0 Journal Article
%A Georges, John
%A Lin, Jianwei
%A Mauro, David
%T The domination number of $K_n^3$
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 629-632
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a14/
%G en
%F DMGT_2014_34_3_a14
Georges, John; Lin, Jianwei; Mauro, David. The domination number of $K_n^3$. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 629-632. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a14/

[1] T.Y. Chang, Domination number of grid graphs, Ph.D. Thesis, (Department of Mathematics, University of South Florida, 1992).

[2] T.Y. Chang and W.E. Clark, The domination numbers of the 5 × n and 6 × n grid graphs, J. Graph Theory 17 (1993) 81-108. doi:10.1002/jgt.3190170110

[3] M.H. El-Zahar and R.S. Shaheen, On the domination number of the product of two cycles, Ars Combin. 84 (2007) 51-64.

[4] M.H. El-Zahar and R.S. Shaheen, The domination number of $C_8 □C_n$ and $C_9 □C_n$, J. Egyptian Math. Soc. 7 (1999) 151-166.

[5] D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé, The domination number of grids, SIAM J. Discrete Math. 25 (2011) 1443-1453. doi:10.1137/11082574

[6] F. Harary and M. Livingston, Independent domination in hypercubes, Appl. Math. Lett. 6 (1993) 27-28. doi:10.1016/0893-9659(93)90027-K

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1998).

[8] M.S. Jacobson and L.F. Kinch, On the domination number of the products of graphs I, Ars Combin. 18 (1983) 33-44.

[9] S. Klavžar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129-136. doi:10.1016/0166-218X(93)E0167-W

[10] K.-J. Pai and W.-J. Chiu, A note on ”On the power dominating set of hypercubes”, in: Proceedings of the 29th Workshop on Combinatorial Mathematics and Computing Theory, National Taipei College of Business, Taipei, Taiwan April 27-28, (2012) 65-68.

[11] R.S. Shaheen, On the domination number of m × n toroidal grid graphs, Congr. Numer. 146 (2000) 187-200.

[12] V.G Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk, 23 (6 (144)) (1968) 117-134.

[13] V.G Vizing, The Cartesian product of graphs, Vyčisl. Sistemy 9 (1963) 30-43.

[14] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001)