On twin edge colorings of graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 613-627.

Voir la notice de l'article provenant de la source Library of Science

A twin edge k-coloring of a graph G is a proper edge coloring of G with the elements of ℤ_k so that the induced vertex coloring in which the color of a vertex v in G is the sum (in ℤ_k) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph
Keywords: edge coloring, vertex coloring, factorization
@article{DMGT_2014_34_3_a13,
     author = {Andrews, Eric and Helenius, Laars and Johnston, Daniel and VerWys, Jonathon and Zhang, Ping},
     title = {On twin edge colorings of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {613--627},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a13/}
}
TY  - JOUR
AU  - Andrews, Eric
AU  - Helenius, Laars
AU  - Johnston, Daniel
AU  - VerWys, Jonathon
AU  - Zhang, Ping
TI  - On twin edge colorings of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 613
EP  - 627
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a13/
LA  - en
ID  - DMGT_2014_34_3_a13
ER  - 
%0 Journal Article
%A Andrews, Eric
%A Helenius, Laars
%A Johnston, Daniel
%A VerWys, Jonathon
%A Zhang, Ping
%T On twin edge colorings of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 613-627
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a13/
%G en
%F DMGT_2014_34_3_a13
Andrews, Eric; Helenius, Laars; Johnston, Daniel; VerWys, Jonathon; Zhang, Ping. On twin edge colorings of graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 613-627. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a13/

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244. doi:10.1016/j.jctb.2005.01.001

[2] M. Anholcer, S. Cichacz and M. Milanič, Group irregularity strength of connected graphs, J. Comb. Optim., to appear. doi:10.1007/s10878-013-9628-6

[3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.

[4] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs: 5th Edition (Chapman & Hall/CRC, Boca Raton, FL, 2010).

[5] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC, Boca Raton, FL, 2008). doi:10.1201/9781584888017

[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) #DS6.

[7] R.B. Gnana Jothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University (1991).

[8] S.W. Golomb, How to number a graph, in: Graph Theory and Computing R.C. Read (Ed.), (Academic Press, New York, 1972) 23-37.

[9] R. Jones, Modular and Graceful Edge Colorings of Graphs, Ph.D. Thesis, Western Michigan University (2011).

[10] R. Jones, K. Kolasinski, F. Fujie-Okamoto and P. Zhang, On modular edge-graceful graphs, Graphs Combin. 29 (2013) 901-912. doi:10.1007/s00373-012-1147-1

[11] R. Jones, K. Kolasinski and P. Zhang, A proof of the modular edge-graceful trees conjecture, J. Combin. Math. Combin. Comput. 80 (2012) 445-455.

[12] M. Karoński, T. Luczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001

[13] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Proc. Internat. Symposium Rome 1966 (Gordon and Breach, New York 1967) 349-355.

[14] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian).