Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_3_a11, author = {Caria, Pablo De and McKee, Terry A.}, title = {Maxclique and unit disk characterizations of strongly chordal graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {593--602}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a11/} }
TY - JOUR AU - Caria, Pablo De AU - McKee, Terry A. TI - Maxclique and unit disk characterizations of strongly chordal graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 593 EP - 602 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a11/ LA - en ID - DMGT_2014_34_3_a11 ER -
Caria, Pablo De; McKee, Terry A. Maxclique and unit disk characterizations of strongly chordal graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 593-602. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a11/
[1] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J. Discrete Math. 11 (1998) 437-455. doi:10.1137/S0895480193253415
[2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796
[3] P. De Caria and M. Gutierrez, On minimal vertex separators of dually chordal graphs: properties and characterizations, Discrete Appl. Math. 160 (2012) 2627-2635. doi:10.1016/j.dam.2012.02.022
[4] P. De Caria and M. Gutierrez, On the correspondence between tree representations of chordal and dually chordal graphs, Discrete Appl. Math. 164 (2014) 500-511. doi:10.1016/j.dam.2013.07.011
[5] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189. doi:10.1016/0012-365X(83)90154-1
[6] T.A. McKee, How chordal graphs work, Bull. Inst. Combin. Appl. 9 (1993) 27-39.
[7] T.A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247. doi:10.1016/S0012-365X(99)00107-7
[8] T.A. McKee, Subgraph trees in graph theory, Discrete Math. 270 (2003) 3-12. doi:10.1016/S0012-365X(03)00161-4
[9] T.A. McKee, The neighborhood characteristic parameter for graphs, Electron. J. Combin. 10 (2003) #R20.
[10] T.A. McKee, When fundamental cycles span cliques, Congr. Numer. 191 (2008) 213-218.
[11] T.A. McKee, Simplicial and nonsimplicial complete subgraphs, Discuss. Math.
[12] Graph Theory 31 (2011) 577-586. doi:10.7151/dmgt.1566
[13] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719802
[14] T.A. McKee and E. Prisner, An approach to graph-theoretic homology, Combinatorics, Graph Theory and Algorithms Y. Alavi, et al. Eds, New Issues Press, Kalamazoo, MI (1999) 2 631-640.