Maxclique and unit disk characterizations of strongly chordal graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 593-602.

Voir la notice de l'article provenant de la source Library of Science

Maxcliques (maximal complete subgraphs) and unit disks (closed neighborhoods of vertices) sometime play almost interchangeable roles in graph theory. For instance, interchanging them makes two existing characterizations of chordal graphs into two new characterizations. More intriguingly, these characterizations of chordal graphs can be naturally strengthened to new characterizations of strongly chordal graphs.
Keywords: chordal graph, strongly chordal graph, clique, maxclique, closed neighborhood
@article{DMGT_2014_34_3_a11,
     author = {Caria, Pablo De and McKee, Terry A.},
     title = {Maxclique and unit disk characterizations of strongly chordal graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {593--602},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a11/}
}
TY  - JOUR
AU  - Caria, Pablo De
AU  - McKee, Terry A.
TI  - Maxclique and unit disk characterizations of strongly chordal graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 593
EP  - 602
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a11/
LA  - en
ID  - DMGT_2014_34_3_a11
ER  - 
%0 Journal Article
%A Caria, Pablo De
%A McKee, Terry A.
%T Maxclique and unit disk characterizations of strongly chordal graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 593-602
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a11/
%G en
%F DMGT_2014_34_3_a11
Caria, Pablo De; McKee, Terry A. Maxclique and unit disk characterizations of strongly chordal graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 593-602. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a11/

[1] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM J. Discrete Math. 11 (1998) 437-455. doi:10.1137/S0895480193253415

[2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796

[3] P. De Caria and M. Gutierrez, On minimal vertex separators of dually chordal graphs: properties and characterizations, Discrete Appl. Math. 160 (2012) 2627-2635. doi:10.1016/j.dam.2012.02.022

[4] P. De Caria and M. Gutierrez, On the correspondence between tree representations of chordal and dually chordal graphs, Discrete Appl. Math. 164 (2014) 500-511. doi:10.1016/j.dam.2013.07.011

[5] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189. doi:10.1016/0012-365X(83)90154-1

[6] T.A. McKee, How chordal graphs work, Bull. Inst. Combin. Appl. 9 (1993) 27-39.

[7] T.A. McKee, A new characterization of strongly chordal graphs, Discrete Math. 205 (1999) 245-247. doi:10.1016/S0012-365X(99)00107-7

[8] T.A. McKee, Subgraph trees in graph theory, Discrete Math. 270 (2003) 3-12. doi:10.1016/S0012-365X(03)00161-4

[9] T.A. McKee, The neighborhood characteristic parameter for graphs, Electron. J. Combin. 10 (2003) #R20.

[10] T.A. McKee, When fundamental cycles span cliques, Congr. Numer. 191 (2008) 213-218.

[11] T.A. McKee, Simplicial and nonsimplicial complete subgraphs, Discuss. Math.

[12] Graph Theory 31 (2011) 577-586. doi:10.7151/dmgt.1566

[13] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719802

[14] T.A. McKee and E. Prisner, An approach to graph-theoretic homology, Combinatorics, Graph Theory and Algorithms Y. Alavi, et al. Eds, New Issues Press, Kalamazoo, MI (1999) 2 631-640.