Degree sequences of monocore graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 585-592.

Voir la notice de l'article provenant de la source Library of Science

A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d_1, . . ., d_n is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min n − 1, k + n − i and ⨊d_i = 2m, where m satisfies ⌈k·n/2⌉ ≤ m ≤ k ・ n − k+12
Keywords: monocore graph, degeneracy, degree sequence
@article{DMGT_2014_34_3_a10,
     author = {Bickle, Allan},
     title = {Degree sequences of monocore graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {585--592},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/}
}
TY  - JOUR
AU  - Bickle, Allan
TI  - Degree sequences of monocore graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 585
EP  - 592
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/
LA  - en
ID  - DMGT_2014_34_3_a10
ER  - 
%0 Journal Article
%A Bickle, Allan
%T Degree sequences of monocore graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 585-592
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/
%G en
%F DMGT_2014_34_3_a10
Bickle, Allan. Degree sequences of monocore graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 585-592. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/

[1] M. Altaf-Ul-Amin, K. Nishikata, T. Koma, T.Miyasato, Y. Shinbo, M. Arifuzzaman, C. Wada, M. Maeda, et al., Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences, Genome Informatics 14 (2003) 498-499.

[2] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, A. Vespignani, k-core decomposition: a tool for the visualization of large scale networks, Adv. Neural Inf. Process. Syst. 18 (2006) 41.

[3] G. Bader, C. Hogue, An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics 4 (2003). doi:10.1186/1471-2105-4-2

[4] V. Batagelj and M. Zaversnik, An O(m) algorithm for cores decomposition of networks. http://vlado.fmf.uni-lj.si/pub/networks/doc/cores/cores.pdf. (2002) Last accessed November 25, 2011.

[5] A. Bickle, The k-cores of a Graph (Ph.D. Dissertation, Western Michigan University, 2010).

[6] A. Bickle, Structural results on maximal k-degenerate graphs, Discuss. Math. Graph Theory 32 (2012) 659-676. doi:10.7151/dmgt.1637

[7] A. Bickle, Cores and shells of graphs, Math. Bohemica 138 (2013) 43-59.

[8] B. Bollobas, Extremal Graph Theory (Academic Press, 1978).

[9] M. Borowiecki, J. Ivančo, P. Mihók and G. Semanišin, Sequences realizable by maximal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124. doi:10.1002/jgt.3190190112

[10] G. Chartrand and L. Lesniak, Graphs and Digraphs, (4th Ed.) (CRC Press, 2005).

[11] S. Dorogovtsev, A. Goltsev and J. Mendes, k-core organization of complex networks, Phys. Rev. Lett. 96 (2006).

[12] Z. Filáková, P. Mihók and G. Semanišin., A note on maximal k-degenerate graphs, Math. Slovaca 47 (1997) 489-498.

[13] M. Gaertler and M. Patrignani, Dynamic analysis of the autonomous system graph, Proc. 2nd International Workshop on Inter-Domain Performance and Simulation (2004) 13-24.

[14] D.R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096. doi:10.4153/CJM-1970-125-1

[15] T. Luczak, Size and connectivity of the k-core of a random graph, Discrete Math. 91 (1991) 61-68. doi:10.1016/0012-365X(91)90162-U

[16] J. Mitchem, Maximal k-degenerate graphs, Util. Math. 11 (1977) 101-106.

[17] S.B. Seidman, Network structure and minimum degree, Soc. Networks 5 (1983) 269-287. doi:10.1016/0378-8733(83)90028-X

[18] J.M.S. Simões-Pereira, A survey of k-degenerate graphs, Graph Theory Newsletter 5 (1976) 1-7.

[19] D. West, Introduction to Graph Theory, (2nd Ed.) (Prentice Hall, 2001).

[20] S. Wuchty and E. Almaas, Peeling the yeast protein network, Proteomics 5 (2005) 444-449. doi:10.1002/pmic.200400962