Degree sequences of monocore graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 585-592

Voir la notice de l'article provenant de la source Library of Science

A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d_1, . . ., d_n is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min n − 1, k + n − i and ⨊d_i = 2m, where m satisfies ⌈k·n/2⌉ ≤ m ≤ k ・ n − k+12
Keywords: monocore graph, degeneracy, degree sequence
@article{DMGT_2014_34_3_a10,
     author = {Bickle, Allan},
     title = {Degree sequences of monocore graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {585--592},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/}
}
TY  - JOUR
AU  - Bickle, Allan
TI  - Degree sequences of monocore graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 585
EP  - 592
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/
LA  - en
ID  - DMGT_2014_34_3_a10
ER  - 
%0 Journal Article
%A Bickle, Allan
%T Degree sequences of monocore graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 585-592
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/
%G en
%F DMGT_2014_34_3_a10
Bickle, Allan. Degree sequences of monocore graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 585-592. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/