Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_3_a10, author = {Bickle, Allan}, title = {Degree sequences of monocore graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {585--592}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/} }
Bickle, Allan. Degree sequences of monocore graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 585-592. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a10/
[1] M. Altaf-Ul-Amin, K. Nishikata, T. Koma, T.Miyasato, Y. Shinbo, M. Arifuzzaman, C. Wada, M. Maeda, et al., Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences, Genome Informatics 14 (2003) 498-499.
[2] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, A. Vespignani, k-core decomposition: a tool for the visualization of large scale networks, Adv. Neural Inf. Process. Syst. 18 (2006) 41.
[3] G. Bader, C. Hogue, An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics 4 (2003). doi:10.1186/1471-2105-4-2
[4] V. Batagelj and M. Zaversnik, An O(m) algorithm for cores decomposition of networks. http://vlado.fmf.uni-lj.si/pub/networks/doc/cores/cores.pdf. (2002) Last accessed November 25, 2011.
[5] A. Bickle, The k-cores of a Graph (Ph.D. Dissertation, Western Michigan University, 2010).
[6] A. Bickle, Structural results on maximal k-degenerate graphs, Discuss. Math. Graph Theory 32 (2012) 659-676. doi:10.7151/dmgt.1637
[7] A. Bickle, Cores and shells of graphs, Math. Bohemica 138 (2013) 43-59.
[8] B. Bollobas, Extremal Graph Theory (Academic Press, 1978).
[9] M. Borowiecki, J. Ivančo, P. Mihók and G. Semanišin, Sequences realizable by maximal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124. doi:10.1002/jgt.3190190112
[10] G. Chartrand and L. Lesniak, Graphs and Digraphs, (4th Ed.) (CRC Press, 2005).
[11] S. Dorogovtsev, A. Goltsev and J. Mendes, k-core organization of complex networks, Phys. Rev. Lett. 96 (2006).
[12] Z. Filáková, P. Mihók and G. Semanišin., A note on maximal k-degenerate graphs, Math. Slovaca 47 (1997) 489-498.
[13] M. Gaertler and M. Patrignani, Dynamic analysis of the autonomous system graph, Proc. 2nd International Workshop on Inter-Domain Performance and Simulation (2004) 13-24.
[14] D.R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096. doi:10.4153/CJM-1970-125-1
[15] T. Luczak, Size and connectivity of the k-core of a random graph, Discrete Math. 91 (1991) 61-68. doi:10.1016/0012-365X(91)90162-U
[16] J. Mitchem, Maximal k-degenerate graphs, Util. Math. 11 (1977) 101-106.
[17] S.B. Seidman, Network structure and minimum degree, Soc. Networks 5 (1983) 269-287. doi:10.1016/0378-8733(83)90028-X
[18] J.M.S. Simões-Pereira, A survey of k-degenerate graphs, Graph Theory Newsletter 5 (1976) 1-7.
[19] D. West, Introduction to Graph Theory, (2nd Ed.) (Prentice Hall, 2001).
[20] S. Wuchty and E. Almaas, Peeling the yeast protein network, Proteomics 5 (2005) 444-449. doi:10.1002/pmic.200400962