Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_3_a1, author = {Dutta, Kunal and Subramanian, C.R.}, title = {Induced acyclic tournaments in random digraphs: {Sharp} concentration, thresholds and algorithms}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {467--495}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a1/} }
TY - JOUR AU - Dutta, Kunal AU - Subramanian, C.R. TI - Induced acyclic tournaments in random digraphs: Sharp concentration, thresholds and algorithms JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 467 EP - 495 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a1/ LA - en ID - DMGT_2014_34_3_a1 ER -
%0 Journal Article %A Dutta, Kunal %A Subramanian, C.R. %T Induced acyclic tournaments in random digraphs: Sharp concentration, thresholds and algorithms %J Discussiones Mathematicae. Graph Theory %D 2014 %P 467-495 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a1/ %G en %F DMGT_2014_34_3_a1
Dutta, Kunal; Subramanian, C.R. Induced acyclic tournaments in random digraphs: Sharp concentration, thresholds and algorithms. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 467-495. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a1/
[1] D. Achlioptas and A. Naor, The two possible values of the chromatic number of a random graph, Ann. of Math. 162 (2005) 1333-1349. doi:10.4007/annals.2005.162.1335
[2] N. Alon and M. Krivelevich, The concentration of the chromatic number of random graphs, Combinatorica 17 (1997) 303-313. doi:10.1007/BF01215914
[3] N. Alon and J.H. Spencer, The Probabilistic Method (Wiley International, 2001).
[4] B. Bollobás, Random Graphs (2nd Edition, Cambdrige University Press, 2001). doi:10.1017/CBO9780511814068
[5] B. Bollobás and P. Erd˝os, Cliques in random graphs, Math. Proc. Cambridge Philos. Soc. 80 (1988) 419-427. doi:10.1017/S0305004100053056
[6] B.K. Rosen, Robust linear algorithms for cutsets, J. Algorithms 3 (1982) 205-217. doi:10.1016/0196-6774(82)90020-7
[7] K. Dutta and C.R. Subramanian, Largest induced acyclic tournament in random digraphs: A 2-point concentration, in: Proceedings of LATIN-2010 (9th Latin American Theoretical Informatics Symposium), Oaxaca, Mexico, April 2010.
[8] K. Dutta and C.R. Subramanian, Induced acyclic subgraphs in random digraphs: Improved bounds, in: Proceedings of AofA-2010 (21st Internatioanl Meeting on Probabilistic and Asymptotic Methods for the Analysis of Algorithms), Vienna, Austria, June 2010, to appear.
[9] R.W. Floyd Assigning meaning to programs, Proc. Sympos. Appl. Math. 19 (1967) 19-32.
[10] A.M. Frieze, On the independence number of random graphs, Discrete Math. 81 (1990) 171-176. doi:10.1016/0012-365X(90)90149-C
[11] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide To The Theory of NP-Completeness (W.H.Freeman, San Francisco, 1978).
[12] J. Hastad, Clique is hard to approximate within n1−", Acta Math. 182 (1999) 105-142. doi:10.1007/BF02392825
[13] S. Janson, T. Luczak and A. Ruciński, Random Graphs (John Wiley & Sons, Inc., 2000). doi:10.1002/9781118032718
[14] S. Khot, Improved inapproximability results for maxclique, chromatic number and approximate graph coloring, in: Proceedings of the 42nd IEEE Symp. Foundations of Computer Science (FOCS 2001) 600-609.
[15] M. Krivelevich and B. Sudakov, Coloring random graph, Inform. Process. Lett. 67 (1998) 71-74. doi:10.1016/S0020-0190(98)00092-1
[16] T. Luczak, A note on the sharp concentration of the chromatic number of random graphs, Combinatorica 11 (1991) 295-297. doi:10.1007/BF01205080
[17] C. Lund and M. Yannakakis, The approximation of maximum subgraph problems, Proceedings of the 20th International Colloquium on Automata, Languages and Programming (ICALP’93), Lecture Notes in Comput. Sci. 700 (1993) 40-51.
[18] M. Cai, X. Deng and W. Zang, An approximation algorithm for feedback vertex set in tournaments SIAM J. Comput. 30 (2001) 1993-2007. doi:10.1137/S0097539798338163
[19] R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge University Press, 1995). doi:10.1017/CBO9780511814075
[20] C.H. Papadimitriou and M. Yannakakis Optimization, approximation, and complex- ity classes, J. Comput. System Sci. (Special issue for the 20th ACM Symposium on Theory of Computing) 43 (1991) 425-440.
[21] E. Speckenmeyer, On feedback problems in digraphs, Proceedings of the 15th International Workshop on Graph Theoretic Concepts in Computer Science (WG’89), Springer-Verlag, Lecture Notes in Comput. Sci. 411 (1990) 218-231. doi:10.1007/3-540-52292-1 16
[22] J.H. Spencer and C.R. Subramanian, On the size of induced acyclic subgraphs in random digraphs, Discrete Math. Theor. Comput. Sci. 10 (2008) 47-54.
[23] C.R. Subramanian, Finding induced acyclic subgraphs in random digraphs, Electron. J. Combin. 10 (2003) #R46.