On the existence of (k,l)-kernels in infinite digraphs: A survey
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 431-466
Voir la notice de l'article provenant de la source Library of Science
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N, u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k −1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction was done for (2, 1)-kernels, we present many original results concerning (k, l)-kernels for distinct values of k and l. The original results are sufficient conditions for the existence of (k, l)- kernels in diverse families of infinite digraphs. Among the families that we study are: transitive digraphs, quasi-transitive digraphs, right/left pretransitive digraphs, cyclically k-partite digraphs, κ-strong digraphs, k-transitive digraphs, k-quasi-transitive digraphs.
Keywords:
kernel, k-kernel, infinite digraph, (k, l)-kernel
@article{DMGT_2014_34_3_a0,
author = {Galeana-S\'anchez, H. and Hern\'andez-Cruz, C.},
title = {On the existence of (\protect\emph{k},\protect\emph{l})-kernels in infinite digraphs: {A} survey},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {431--466},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a0/}
}
TY - JOUR AU - Galeana-Sánchez, H. AU - Hernández-Cruz, C. TI - On the existence of (k,l)-kernels in infinite digraphs: A survey JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 431 EP - 466 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a0/ LA - en ID - DMGT_2014_34_3_a0 ER -
Galeana-Sánchez, H.; Hernández-Cruz, C. On the existence of (k,l)-kernels in infinite digraphs: A survey. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 431-466. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a0/