Heavy subgraph pairs for traceability of block-chains
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 287-307.

Voir la notice de l'article provenant de la source Library of Science

A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. Let G be a graph on n vertices. We say that an induced subgraph of G is o_−1-heavy if it contains two nonadjacent vertices which satisfy an Ore-type degree condition for traceability, i.e., with degree sum at least n−1 in G. A block-chain is a graph whose block graph is a path, i.e., it is either a P_1, P_2, or a 2-connected graph, or a graph with at least one cut vertex and exactly two end-blocks. Obviously, every traceable graph is a block-chain, but the reverse does not hold. In this paper we characterize all the pairs of connected o_−1-heavy graphs that guarantee traceability of block-chains. Our main result is a common extension of earlier work on degree sum conditions, forbidden subgraph conditions and heavy subgraph conditions for traceability
Keywords: block-chain traceable graph, Ore-type condition, forbidden subgrap, $o_{−1}$-heavy subgraph
@article{DMGT_2014_34_2_a6,
     author = {Li, Binlong and Broersma, Hajo and Zhang, Shenggui},
     title = {Heavy subgraph pairs for traceability of block-chains},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {287--307},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a6/}
}
TY  - JOUR
AU  - Li, Binlong
AU  - Broersma, Hajo
AU  - Zhang, Shenggui
TI  - Heavy subgraph pairs for traceability of block-chains
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 287
EP  - 307
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a6/
LA  - en
ID  - DMGT_2014_34_2_a6
ER  - 
%0 Journal Article
%A Li, Binlong
%A Broersma, Hajo
%A Zhang, Shenggui
%T Heavy subgraph pairs for traceability of block-chains
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 287-307
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a6/
%G en
%F DMGT_2014_34_2_a6
Li, Binlong; Broersma, Hajo; Zhang, Shenggui. Heavy subgraph pairs for traceability of block-chains. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 287-307. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a6/

[1] P. Bedrossian, G. Chen, and R.H. Schelp, A generalization of Fan’s condition for hamiltonicity, pancyclicity, and hamiltonian connectedness, Discrete Math. 115 (1993) 39-50. doi:10.1016/0012-365X(93)90476-A

[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer Graduate Texts in Mathematics 244 (2008).

[3] H.J. Broersma, Z. Ryjáček and I. Schiermeyer, Dirac’s minimum degree condition restricted to claws, Discrete Math. 167/168 (1997) 155-166. doi:10.1016/S0012-365X(96)00224-5

[4] H.J. Broersma and H.J. Veldman, Restrictions on induced subgraphs ensuring hamiltonicity or pancyclicity of $K_{1,3}$-free graphs, in: R. Bodendiek (Ed.) Contemporary Methods in Graph Theory, (BI Wissenschaftsverlag, Mannheim-Wien-Zfirich, 1990) 181-194.

[5] R. Čada, Degree conditions on induced claws, Discrete Math. 308 (2008) 5622-5631. doi:10.1016/j.disc.2007.10.026

[6] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and the hamiltonian theme, in: The Theory and Applications of Graphs (Kalamazoo, Mich. 1980, Wiley, New York, 1981) 297-316.

[7] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45-60. doi:10.1016/S0012-365X(96)00147-1

[8] H. Fleischner, The square of every two-connected graph is hamiltonian, J. Combin. Theory (B) 16 (1974) 29-34. doi:10.1016/0095-8956(74)90091-4

[9] B. Li, H.J. Broersma and S. Zhang, Forbidden subgraph pairs for traceability of block-chains, Electron. J. Graph Theory Appl. 1 (2013) 1-10.

[10] B. Li, Z. Ryjáček, Y. Wang and S. Zhang, Pairs of heavy subgraphs for Hamiltonicity of 2-connected graphs, SIAM J. Discrete Math. 26 (2012) 1088-1103. doi:10.1137/11084786X

[11] B. Li and S. Zhang, On traceability of claw-$o_{−1}$-heavy graphs (2013). arXiv:1303.0991v1