Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_2_a6, author = {Li, Binlong and Broersma, Hajo and Zhang, Shenggui}, title = {Heavy subgraph pairs for traceability of block-chains}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {287--307}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a6/} }
TY - JOUR AU - Li, Binlong AU - Broersma, Hajo AU - Zhang, Shenggui TI - Heavy subgraph pairs for traceability of block-chains JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 287 EP - 307 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a6/ LA - en ID - DMGT_2014_34_2_a6 ER -
Li, Binlong; Broersma, Hajo; Zhang, Shenggui. Heavy subgraph pairs for traceability of block-chains. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 287-307. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a6/
[1] P. Bedrossian, G. Chen, and R.H. Schelp, A generalization of Fan’s condition for hamiltonicity, pancyclicity, and hamiltonian connectedness, Discrete Math. 115 (1993) 39-50. doi:10.1016/0012-365X(93)90476-A
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer Graduate Texts in Mathematics 244 (2008).
[3] H.J. Broersma, Z. Ryjáček and I. Schiermeyer, Dirac’s minimum degree condition restricted to claws, Discrete Math. 167/168 (1997) 155-166. doi:10.1016/S0012-365X(96)00224-5
[4] H.J. Broersma and H.J. Veldman, Restrictions on induced subgraphs ensuring hamiltonicity or pancyclicity of $K_{1,3}$-free graphs, in: R. Bodendiek (Ed.) Contemporary Methods in Graph Theory, (BI Wissenschaftsverlag, Mannheim-Wien-Zfirich, 1990) 181-194.
[5] R. Čada, Degree conditions on induced claws, Discrete Math. 308 (2008) 5622-5631. doi:10.1016/j.disc.2007.10.026
[6] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and the hamiltonian theme, in: The Theory and Applications of Graphs (Kalamazoo, Mich. 1980, Wiley, New York, 1981) 297-316.
[7] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45-60. doi:10.1016/S0012-365X(96)00147-1
[8] H. Fleischner, The square of every two-connected graph is hamiltonian, J. Combin. Theory (B) 16 (1974) 29-34. doi:10.1016/0095-8956(74)90091-4
[9] B. Li, H.J. Broersma and S. Zhang, Forbidden subgraph pairs for traceability of block-chains, Electron. J. Graph Theory Appl. 1 (2013) 1-10.
[10] B. Li, Z. Ryjáček, Y. Wang and S. Zhang, Pairs of heavy subgraphs for Hamiltonicity of 2-connected graphs, SIAM J. Discrete Math. 26 (2012) 1088-1103. doi:10.1137/11084786X
[11] B. Li and S. Zhang, On traceability of claw-$o_{−1}$-heavy graphs (2013). arXiv:1303.0991v1