On the uniqueness of $D$-vertex magic constant
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 279-286.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a graph of order n and let D ⊆ 0, 1, 2, 3, . . .. For v ∈ V, let N_D(v) = u ∈ V : d(u, v) ∈ D. The graph G is said to be D-vertex magic if there exists a bijection f : V (G) → 1, 2, . . ., n such that for all v ∈ V, _∑uv∈ND(v) f(u) is a constant, called D-vertex magic constant. O’Neal and Slater have proved the uniqueness of the D-vertex magic constant by showing that it can be determined by the D-neighborhood fractional domination number of the graph. In this paper we give a simple and elegant proof of this result. Using this result, we investigate the existence of distance magic labelings of complete r-partite graphs where r ≥ 4.
Keywords: distance magic graph, D-vertex magic graph, magic constant, dominating function, fractional domination number
@article{DMGT_2014_34_2_a5,
     author = {Arumugam, S. and Kamatchi, N. and Vijayakumar, G.R.},
     title = {On the uniqueness of $D$-vertex magic constant},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {279--286},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a5/}
}
TY  - JOUR
AU  - Arumugam, S.
AU  - Kamatchi, N.
AU  - Vijayakumar, G.R.
TI  - On the uniqueness of $D$-vertex magic constant
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 279
EP  - 286
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a5/
LA  - en
ID  - DMGT_2014_34_2_a5
ER  - 
%0 Journal Article
%A Arumugam, S.
%A Kamatchi, N.
%A Vijayakumar, G.R.
%T On the uniqueness of $D$-vertex magic constant
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 279-286
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a5/
%G en
%F DMGT_2014_34_2_a5
Arumugam, S.; Kamatchi, N.; Vijayakumar, G.R. On the uniqueness of $D$-vertex magic constant. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 279-286. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a5/

[1] S. Arumugam, D. Fronček and N. Kamatchi, Distance magic graphs-A survey, J. Indones. Math. Soc., Special Edition (2011) 11-26.

[2] S. Beena, On ∑ and ∑′ labelled graphs, Discrete Math. 309 (2009) 1783-1787. doi:10.1016/j.disc.2008.02.038

[3] G. Chartrand and L. Lesniak, Graphs & Digraphs, 4th Edition (Chapman and Hall, CRC, 2005).

[4] D. Grinstead and P.J. Slater, Fractional domination and fractional packings in graphs, Congr. Numer. 71 (1990) 153-172.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Marcel Dekker, Inc., 1998).

[6] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305-315.

[7] A. O’Neal and P.J. Slater, An introduction to distance D magic graphs, J. Indones. Math. Soc., Special Edition (2011) 91-107.

[8] A. O’Neal and P.J. Slater, Uniqueness of vertex magic constants, SIAM J. Discrete Math. 27 (2013) 708-716. doi:10.1137/110834421

[9] K.A. Sugeng, D. Fronček, M. Miller, J. Ryan and J. Walker, On distance magic labeling of graphs, J. Combin. Math. Combin. Comput. 71 (2009) 39-48.

[10] V. Vilfred, ∑-labelled graph and circulant graphs, Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994.