The irregularity of graphs under graph operations
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 263-278.

Voir la notice de l'article provenant de la source Library of Science

The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑_uv∈E(G) |dG(u) − dG(v)|, where d_G(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and symmetric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned operations
Keywords: irregularity of graphs, total irregularity of graphs, graph operations, Zagreb indices
@article{DMGT_2014_34_2_a4,
     author = {Abdo, Hosam and Dimitrov, Darko},
     title = {The irregularity of graphs under graph operations},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {263--278},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a4/}
}
TY  - JOUR
AU  - Abdo, Hosam
AU  - Dimitrov, Darko
TI  - The irregularity of graphs under graph operations
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 263
EP  - 278
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a4/
LA  - en
ID  - DMGT_2014_34_2_a4
ER  - 
%0 Journal Article
%A Abdo, Hosam
%A Dimitrov, Darko
%T The irregularity of graphs under graph operations
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 263-278
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a4/
%G en
%F DMGT_2014_34_2_a4
Abdo, Hosam; Dimitrov, Darko. The irregularity of graphs under graph operations. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 263-278. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a4/

[1] H. Abdo and D. Dimitrov, Total irregularity of a graph, (2012) a manuscript. arxiv.org/abs/1207.5267

[2] Y. Alavi, A. Boals, G. Chartrand, P. Erdös and O.R. Oellermann, k-path irregular graphs, Congr. Numer. 65 (1988) 201-210.

[3] Y. Alavi, G. Chartrand, F.R.K. Chung, P. Erdős, R.L. Graham and O.R. Oeller- mann, Highly irregular graphs, J. Graph Theory 11 (1987) 235-249. doi:10.1002/jgt.3190110214

[4] Y. Alavi, J. Liu and J. Wang, Highly irregular digraphs, Discrete Math. 111 (1993) 3-10. doi:10.1016/0012-365X(93)90134-F

[5] M.O. Albertson, The irregularity of a graph, Ars Combin. 46 (1997) 219-225.

[6] M.O. Albertson and D. Berman, Ramsey graphs without repeated degrees, Congr. Numer. 83 (1991) 91-96.

[7] F.K. Bell, A note on the irregularity of graphs, Linear Algebra Appl. 161 (1992) 45-54. doi:10.1016/0024-3795(92)90004-T

[8] F.K. Bell, On the maximal index of connected graphs, Linear Algebra Appl. 144 (1991) 135-151. doi:10.1016/0024-3795(91)90067-7

[9] G. Chartrand, P. Erdős and O.R. Oellermann, How to define an irregular graph, College Math. J. 19 (1988) 36-42. doi:10.2307/2686701

[10] G. Chartrand, K.S. Holbert, O.R. Oellermann and H.C. Swart, F-degrees in graphs, Ars Combin. 24 (1987) 133-148.

[11] G. Chen, P. Erdős, C. Rousseau and R. Schelp, Ramsey problems involving degrees in edge-colored complete graphs of vertices belonging to monochromatic subgraphs, European J. Combin. 14 (1993) 183-189. doi:10.1006/eujc.1993.1023

[12] L. Collatz and U. Sinogowitz, Spektren endlicher Graphen, Abh. Math. Semin. Univ. Hamburg 21 (1957) 63-77. doi:10.1007/BF02941924

[13] D. Cvetković and P. Rowlinson, On connected graphs with maximal index, Publications de l’Institut Mathematique Beograd 44 (1988) 29-34.

[14] K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.

[15] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, On vertex degree based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.

[16] G.H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 79-84.

[17] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.

[18] I. Gutman, P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs. 10. Comparison of irregularity indices for chemical trees, J. Chem. Inf. Model. 45 (2005) 222-230. doi:10.1021/ci0342775

[19] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (CRC Press, Boca Raton, FL, 2011).

[20] P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs. 9. Bounding the irregularity of a graph, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69 (2005) 253-264.

[21] M.A. Henning and D. Rautenbach, On the irregularity of bipartite graphs, Discrete Math. 307 (2007) 1467-1472.

[22] D.E. Jackson and R. Entringer, Totally segregated graphs, Congr. Numer. 55 (1986) 159-165.

[23] D.J. Miller, The categorical product of graphs, Canad. J. Math. 20 (1968) 1511-1521. doi:10.4153/CJM-1968-151-x

[24] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.

[25] N. Trinajstić, S. Nikolić, A. Miličević and I. Gutman, On Zagreb indices, Kem. Ind. 59 (2010) 577-589.

[26] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52. doi:10.4153/CJM-1968-151-x

[27] V. Yegnanarayanan, P.R. Thiripurasundari and T. Padmavathy, On some graph operations and related applications, Electron. Notes Discrete Math. 33 (2009) 123-130. doi:10.1016/j.endm.2009.03.018

[28] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 591-596.

[29] B. Zhou and I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem 54 (2005) 233-239.