The depression of a graph and k-kernels
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 233-247.

Voir la notice de l'article provenant de la source Library of Science

An edge ordering of a graph G is an injection f : E(G) → R, the set of real numbers. A path in G for which the edge ordering f increases along its edge sequence is called an f-ascent ; an f-ascent is maximal if it is not contained in a longer f-ascent. The depression of G is the smallest integer k such that any edge ordering f has a maximal f-ascent of length at most k. A k-kernel of a graph G is a set of vertices U ⊆ V (G) such that for any edge ordering f of G there exists a maximal f-ascent of length at most k which neither starts nor ends in U. Identifying a k-kernel of a graph G enables one to construct an infinite family of graphs from G which have depression at most k. We discuss various results related to the concept of k-kernels, including an improved upper bound for the depression of trees.
Keywords: edge ordering of a graph, increasing path, monotone path, depression
@article{DMGT_2014_34_2_a2,
     author = {Schurch, Mark and Mynhardt, Christine},
     title = {The depression of a graph and \protect\emph{k}-kernels},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {233--247},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a2/}
}
TY  - JOUR
AU  - Schurch, Mark
AU  - Mynhardt, Christine
TI  - The depression of a graph and k-kernels
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 233
EP  - 247
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a2/
LA  - en
ID  - DMGT_2014_34_2_a2
ER  - 
%0 Journal Article
%A Schurch, Mark
%A Mynhardt, Christine
%T The depression of a graph and k-kernels
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 233-247
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a2/
%G en
%F DMGT_2014_34_2_a2
Schurch, Mark; Mynhardt, Christine. The depression of a graph and k-kernels. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a2/

[1] A. Bialostocki and Y. Roditty, A monotone path in an edge-ordered graph, Int. J. Math. Math. Sci. 10 (1987) 315-320. doi:10.1155/S0161171287000383

[2] A.P. Burger, E.J. Cockayne and C.M. Mynhardt, Altitude of small complete and complete bipartite graphs, Australas. J. Combin. 31 (2005) 167-177.

[3] A.R. Calderbank and F.R.K. Chung and D.G. Sturtevant, Increasing sequences with nonzero block sums and increasing paths in edge-ordered graphs, Discrete Math. 50 (1984) 15-28. doi:10.1016/0012-365X(84)90031-1

[4] G. Chartrand and L.M. Lesniak, Graphs and Digraphs (Third Ed.) (Wadsworth, 1996).

[5] V. Chvátal and J. Koml´os, Some combinatorial theorems on monotonicity, Canad. Math. Bull. 14 (1971) 151-157. doi:10.4153/CMB-1971-028-8

[6] T.C. Clark and B. Falvai, N.D.R. Henderson and C.M. Mynhardt, Altitude of 4-regular circulants, AKCE Int. J. Graphs Comb. 1 (2004) 149-166.

[7] E.J. Cockayne and G. Geldenhuys, P.J.P Grobler, C.M. Mynhardt and J.H. van Vuuren, The depression of a graph, Util. Math. 69 (2006) 143-160.

[8] E.J. Cockayne and C.M. Mynhardt, Altitude of $K_{3,n}$, J. Combin. Math. Combin. Comput. 52 (2005) 143-157.

[9] E.J. Cockayne and C.M. Mynhardt, A lower bound for the depression of trees, Australas. J. Combin. 35 (2006) 319-328.

[10] T. Dzido and H. Furmańczyk, Altitude of wheels and wheel-like graphs, Cent. Eur. J. Math. 8 (2010) 319-326. doi:10.7151/s11533-010-0017-4

[11] I. Gaber-Rosenblum and Y. Roditty, The depression of a graph and the diameter of its line graph, Discrete Math. 309 (2009) 1774-1778. doi:10.1016/j.disc.2008.03.002

[12] R.L. Graham and D.J. Kleitman, Increasing paths in edge ordered graphs, Period. Math. Hungar. 3 (1973) 141-148. doi:10.1007/BF02018469

[13] J. Katrenič and G. Semanišin, Finding monotone paths in edge-ordered graphs, Discrete Appl. Math. 158 (2010) 1624-1632. doi:10.1016/j.dam.2010.05.018

[14] C.M. Mynhardt, Trees with depression three, Discrete Math. 308 (2008) 855-864. doi:10.1016/j.disc.2007.07.039

[15] C.M. Mynhardt, A.P. Burger and T.C. Clark, B. Falvai, and N.D.R. Henderson, Altitude of regular graphs with girth at least five, Discrete Math. 294 (2005) 241-257. doi:10.1016/j.disc.2005.02.007

[16] C.M. Mynhardt and M. Schurch, A class of graphs with depression three, Discrete Math. 313 (2013) 1224-1232. doi:10.1016/j.disc.2012.05.011

[17] Y. Roditty, B. Shoham and R. Yuster, Monotone paths in edge-ordered sparse graphs, Discrete Math. 226 (2001) 411-417. doi:10.1016/S0012-365X(00)00174-6

[18] R. Yuster, Large monotone paths in graphs with bounded degree, Graphs Combin. 17 (2001) 579-587. doi:10.1007/s003730170031