A note on $PM$-compact bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 409-413

Voir la notice de l'article provenant de la source Library of Science

A graph is called perfect matching compact (briefly, PM-compact), if its perfect matching graph is complete. Matching-covered PM-compact bipartite graphs have been characterized. In this paper, we show that any PM-compact bipartite graph G with δ (G) ≥ 2 has an ear decomposition such that each graph in the decomposition sequence is also PM-compact, which implies that G is matching-covered
Keywords: perfect matching, PM-compact graph, matching-covered graph
@article{DMGT_2014_34_2_a13,
     author = {Liu, Jinfeng and Wang, Xiumei},
     title = {A note on $PM$-compact bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {409--413},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a13/}
}
TY  - JOUR
AU  - Liu, Jinfeng
AU  - Wang, Xiumei
TI  - A note on $PM$-compact bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 409
EP  - 413
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a13/
LA  - en
ID  - DMGT_2014_34_2_a13
ER  - 
%0 Journal Article
%A Liu, Jinfeng
%A Wang, Xiumei
%T A note on $PM$-compact bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 409-413
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a13/
%G en
%F DMGT_2014_34_2_a13
Liu, Jinfeng; Wang, Xiumei. A note on $PM$-compact bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 409-413. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a13/