A note on $PM$-compact bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 409-413.

Voir la notice de l'article provenant de la source Library of Science

A graph is called perfect matching compact (briefly, PM-compact), if its perfect matching graph is complete. Matching-covered PM-compact bipartite graphs have been characterized. In this paper, we show that any PM-compact bipartite graph G with δ (G) ≥ 2 has an ear decomposition such that each graph in the decomposition sequence is also PM-compact, which implies that G is matching-covered
Keywords: perfect matching, PM-compact graph, matching-covered graph
@article{DMGT_2014_34_2_a13,
     author = {Liu, Jinfeng and Wang, Xiumei},
     title = {A note on $PM$-compact bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {409--413},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a13/}
}
TY  - JOUR
AU  - Liu, Jinfeng
AU  - Wang, Xiumei
TI  - A note on $PM$-compact bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 409
EP  - 413
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a13/
LA  - en
ID  - DMGT_2014_34_2_a13
ER  - 
%0 Journal Article
%A Liu, Jinfeng
%A Wang, Xiumei
%T A note on $PM$-compact bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 409-413
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a13/
%G en
%F DMGT_2014_34_2_a13
Liu, Jinfeng; Wang, Xiumei. A note on $PM$-compact bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 409-413. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a13/

[1] H. Bian and F. Zhang, The graph of perfect matching polytope and an extreme problem, Discrete. Math. 309 (2009) 5017–5023. doi:10.1016/j.disc.2009.03.009

[2] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, Berlin, 2008).

[3] L. Lov´asz and M.D. Plummer, Matching Theory (Elsevier Science Publishers, B.V. North Holland, 1986).

[4] V. Chv´atal, On certain polytopes associated with graphs, J. Combin. Theory (B) 18 (1975) 138–154. doi:10.1016/0095-8956(75)90041-6

[5] D.J. Naddef and W.R. Pulleyblank, Hamiltonicity in (0 − 1)-polytope, J. Combin. Theory (B) 37 (1984) 41–52. doi:10.1016/0095-8956(84)90043-1

[6] M.W. Padberg and M.R. Rao, The travelling salesman problem and a class of polyhedra of diameter two, Math. Program. 7 (1974) 32–45. doi:10.1007/BF01585502

[7] X.M. Wang, Y.X. Lin, M.H. Carvalho, C.L. Lucchesi, G. Sanjith and C.H.C. Little, A characterization of P M -compact biparite graphs and near-bipartite graphs, (2012) in submission.