Families of triples with high minimum degree are Hamiltonian
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 361-381.

Voir la notice de l'article provenant de la source Library of Science

In this paper we show that every family of triples, that is, a 3-uniform hypergraph, with minimum degree at least (5−√5/3 + γ)n−12 contains a tight Hamiltonian cycle.
Keywords: 3-uniform hypergraph, Hamilton cycle, minimum vertex degree
@article{DMGT_2014_34_2_a10,
     author = {R\"odl, Vojtech and Ruci\'nski, Andrzej},
     title = {Families of triples with high minimum degree are {Hamiltonian}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {361--381},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a10/}
}
TY  - JOUR
AU  - Rödl, Vojtech
AU  - Ruciński, Andrzej
TI  - Families of triples with high minimum degree are Hamiltonian
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 361
EP  - 381
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a10/
LA  - en
ID  - DMGT_2014_34_2_a10
ER  - 
%0 Journal Article
%A Rödl, Vojtech
%A Ruciński, Andrzej
%T Families of triples with high minimum degree are Hamiltonian
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 361-381
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a10/
%G en
%F DMGT_2014_34_2_a10
Rödl, Vojtech; Ruciński, Andrzej. Families of triples with high minimum degree are Hamiltonian. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 361-381. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a10/

[1] R. Aharoni, A. Georgakopoulos and P. Sprüssel, Perfect matchings in r-partite r- graphs, European J. Combin. 30 (2009) 39-42. doi:10.1016/j.ejc.2008.02.011

[2] E. Buss, H. H`an and M. Schacht, Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs, J. Combin. Theory (B), to appear.

[3] R. Glebov, Y. Person andW.Weps, On extremal hypergraphs for hamiltonian cycles, European J. Combin. 33 (2012) 544-555 (An extended abstract has appeared in the Proceedings of EuroComb 2011). doi:10.1016/j.ejc.2011.10.003

[4] H. Hàn, Y. Person and M. Schacht, On perfect matchings in uniform hypergraphs with large minimum vertex degree, SIAM J. Discrete Math. 23 (2009) 732-748. doi:10.1137/080729657

[5] H. Hàn and M. Schacht, Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Combin. Theory (B) 100 (2010) 332-346. doi:10.1016/j.jctb.2009.10.002

[6] S. Janson, T. Luczak and A. Ruciński, Random Graphs (John Wiley and Sons, New York, 2000). doi:10.1002/9781118032718

[7] G.Y. Katona and H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) 205-212. doi:10.1002/(SICI)1097-0118(199903)30:3h205::AID-JGT5i3.0.CO;2-O

[8] P. Keevash, D. Kühn, R. Mycroft and D. Osthus, Loose Hamilton cycles in hypergraphs, Discrete Math. 311 (2011) 544-559. doi:10.1016/j.disc.2010.11.013

[9] I. Khan, Perfect matching in 3-uniform hypergraphs with large vertex degree, SIAM J. Discrete Math. 27 (2013) 1021-1039. doi:10.1137/10080796X

[10] D. Kühn, R. Mycroft and D. Osthus, Hamilton l-cycles in uniform hypergraphs, J. ombin. Theory (A) 117 (2010) 910-927. doi:10.1016/j.jcta.2010.02.010

[11] D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J. raph Theory 51 (2006) 269-280. doi:10.1002/jgt.20139

[12] D. Kühn and D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, J. Combin. Theory (B) 96 (2006) 767-821. doi:10.1016/j.jctb.2006.02.004

[13] D. Kühn, D. Osthus and A. Treglown, Matchings in 3-uniform hypergraphs, J. Com- bin. Theory (B) 103 (2013) 291-305. doi:10.1016/j.jctb.2012.11.005

[14] O. Pikhurko, Perfect matchings and $K_4^3$-tilings in hypergraphs of large codegree, Graphs Combin. 24 (2008) 391-404. doi:10.1007/s00373-008-0787-7

[15] V. Rödl and A. Ruciński, Dirac-type questions for hypergraphs-a survey (or more problems for Endre to solve), An Irregular Mind (Szemerédi is 70), Bolyai Soc. Math. tud. 21 (2010) 561-590.

[16] V. Rödl, A. Ruciński and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006) 229-251. doi:10.1017/S0963548305007042

[17] V. Rödl, A. Ruciński and E. Szemerédi, Perfect matchings in uniform hypergraphs with large minimum degree, European. J. Combin. 27 (2006) 1333-1349. doi:10.1016/j.ejc.2006.05.008

[18] V. Rödl, A. Ruciński and E. Szemerédi, An approximate Dirac-type theorem for k- uniform hypergraphs, Combinatorica 28 (2008) 229-260. doi:10.1007/s00493-008-2295-z

[19] V. Rödl, A. Ruciński and E. Szemerédi, Perfect matchings in large uniform hypergraphs with large minimum collective degree, J. Combin. Theory (A) 116 (2009) 613-636. doi:10.1016/j.jcta.2008.10.002

[20] V. Rödl, A. Ruciński and E. Szemerédi, Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs, Adv. Math. 227 (2011) 1225-1299. doi:10.1016/j.aim.2011.03.007

[21] V. Rödl, A. Ruciński, M. Schacht and E. Szemerédi, A note on perfect matchings in uniform hypergraphs with large minimum collective degree, Comment. Math. Univ. arolin. 49 (2008) 633-636.