Families of triples with high minimum degree are Hamiltonian
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 361-381
Voir la notice de l'article provenant de la source Library of Science
In this paper we show that every family of triples, that is, a 3-uniform hypergraph, with minimum degree at least (5−√5/3 + γ)n−12 contains a tight Hamiltonian cycle.
Keywords:
3-uniform hypergraph, Hamilton cycle, minimum vertex degree
@article{DMGT_2014_34_2_a10,
author = {R\"odl, Vojtech and Ruci\'nski, Andrzej},
title = {Families of triples with high minimum degree are {Hamiltonian}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {361--381},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a10/}
}
TY - JOUR AU - Rödl, Vojtech AU - Ruciński, Andrzej TI - Families of triples with high minimum degree are Hamiltonian JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 361 EP - 381 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a10/ LA - en ID - DMGT_2014_34_2_a10 ER -
Rödl, Vojtech; Ruciński, Andrzej. Families of triples with high minimum degree are Hamiltonian. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 361-381. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a10/