Motion planning in Cartesian product graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 207-221.

Voir la notice de l'article provenant de la source Library of Science

Let G be an undirected graph with n vertices. Assume that a robot is placed on a vertex and n − 2 obstacles are placed on the other vertices. A vertex on which neither a robot nor an obstacle is placed is said to have a hole. Consider a single player game in which a robot or obstacle can be moved to adjacent vertex if it has a hole. The objective is to take the robot to a fixed destination vertex using minimum number of moves. In general, it is not necessary that the robot will take a shortest path between the source and destination vertices in graph G. In this article we show that the path traced by the robot coincides with a shortest path in case of Cartesian product graphs. We give the minimum number of moves required for the motion planning problem in Cartesian product of two graphs having girth 6 or more. A result that we prove in the context of Cartesian product of P_n with itself has been used earlier to develop an approximation algorithm for (n^2 − 1)-puzzle
Keywords: robot motion in a graph, Cartesian product of graphs
@article{DMGT_2014_34_2_a0,
     author = {Deb, Biswajit and Kapoor, Kalpesh},
     title = {Motion planning in {Cartesian} product graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {207--221},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a0/}
}
TY  - JOUR
AU  - Deb, Biswajit
AU  - Kapoor, Kalpesh
TI  - Motion planning in Cartesian product graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 207
EP  - 221
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a0/
LA  - en
ID  - DMGT_2014_34_2_a0
ER  - 
%0 Journal Article
%A Deb, Biswajit
%A Kapoor, Kalpesh
%T Motion planning in Cartesian product graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 207-221
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a0/
%G en
%F DMGT_2014_34_2_a0
Deb, Biswajit; Kapoor, Kalpesh. Motion planning in Cartesian product graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 207-221. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a0/

[1] G. Calinescu, A. Dumitrescu and J. Pach, Reconfigurations in graphs and grids, in: Latin American Theoretical Informatics Conference Lecture Notes in Computer Science 3887 (2006) 262-273. doi:10.1007/11682462 27

[2] B. Deb, K. Kapoor and S. Pati, On mrj reachability in trees Discrete Math., Alg. and Appl. 4 (2012). doi:10.1142/S1793830912500553

[3] T. Feder, Stable Networks and Product Graphs (Memoirs of the American Mathematical Society, 1995). doi:10.1090/memo/0555

[4] R. Hammack, W. Imrich and S. Klažar, Handbook of Product Graphs, Second Edition (CRC Press, New York, 2011).

[5] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

[6] W. Imrich and S. Klavžar, Product Graphs, Structure and Recognition (John Wiley & Sons Inc., New York, 2000).

[7] W. Woolsey Johnson and W.E. Story, Notes on the ”15” puzzle, Amer. J. Math. 2 (1879) 397-404. doi:10.2307/2369492

[8] D. Kornhauser, G. Miller, and P. Spirakis, Coordinating pebble motion on graphs, the diameter of permutation groups, and applications, in: Annual Symposium on Foundations of Computer Science, IEEE Computer Society (1984) 241-250. doi:10.1109/SFCS.1984.715921

[9] E. Masehian and A.H. Nejad, Solvability of multi robot motion planning problems on trees, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, NJ, USA (2009), IEEE Press. 5936-5941. doi:10.1109/IROS.2009.5354148

[10] C.H. Papadimitriou, P. Raghavan, M. Sudan and H. Tamaki, Motion planning on a graph, in: FOCS’94 (1994) 511-520. doi:10.1109/SFCS.1994.365740

[11] I. Parberry, A real-time algorithm for the (n2 −1)-puzzle, Inform. Process. Lett. 56 (1995) 23-28. doi:10.1016/0020-0190(95)00134-X

[12] D. Ratner and M.K. Warmuth, The (n2 −1)-puzzle and related relocation problems, J. Symbolic Comput. 10 (1990) 111-137. doi:10.1016/S0747-7171(08)80001-6

[13] D. Ratner and M.K. Warmuth, Finding a shortest solution for the n × n extension of the 15-puzzle is intractable, in: AAAI(1986) 168-172.

[14] R.M. Wilson, Graph puzzles, homotopy, and the alternating group, J. Combin. The- ory (B) 16 (1974) 86-96. doi:10.1016/0095-8956(74)90098-7