On the Determinant of q-Distance Matrix of a Graph
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 103-111.

Voir la notice de l'article provenant de la source Library of Science

In this note, we show how the determinant of the q-distance matrix Dq(T) of a weighted directed graph G can be expressed in terms of the corresponding determinants for the blocks of G, and thus generalize the results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85-88]. Further, by means of the result, we determine the determinant of the q-distance matrix of the graph obtained from a connected weighted graph G by adding the weighted branches to G, and so generalize in part the results obtained by Bapat et al. [R.B. Bapat, S. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193- 209]. In particular, as a consequence, determinantal formulae of q-distance matrices for unicyclic graphs and one class of bicyclic graphs are presented.
Keywords: q-distance matrix, determinant, weighted graph, directed graph
@article{DMGT_2014_34_1_a8,
     author = {Li, Hong-Hai and Su, Li and Zhang, Jing},
     title = {On the {Determinant} of {\protect\emph{q}-Distance} {Matrix} of a {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {103--111},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a8/}
}
TY  - JOUR
AU  - Li, Hong-Hai
AU  - Su, Li
AU  - Zhang, Jing
TI  - On the Determinant of q-Distance Matrix of a Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 103
EP  - 111
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a8/
LA  - en
ID  - DMGT_2014_34_1_a8
ER  - 
%0 Journal Article
%A Li, Hong-Hai
%A Su, Li
%A Zhang, Jing
%T On the Determinant of q-Distance Matrix of a Graph
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 103-111
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a8/
%G en
%F DMGT_2014_34_1_a8
Li, Hong-Hai; Su, Li; Zhang, Jing. On the Determinant of q-Distance Matrix of a Graph. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 103-111. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a8/

[1] R.B. Bapat, S. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209. doi:10.1016/j.laa.2004.05.011

[2] R.B. Bapat, A.K. Lal and S. Pati, A q-analogue of the distance matrix of a tree, Linear Algebra Appl. 416 (2006) 799-814. doi:10.1016/j.laa.2005.12.023

[3] R.B. Bapat and Pritha Rekhi, Inverses of q-distance matrices of a tree, Linear Algebra Appl. 431 (2009) 1932-1939. doi:10.1016/j.laa.2009.06.032

[4] R.L. Graham and H.O. Pollak, On the addressing problem for loop switching, Bell. System Tech. J. 50 (1971) 2495-2519.

[5] R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85-88. doi:10.1002/jgt.3190010116

[6] S.G. Guo, The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl. 408 (2005) 78-85. doi:10.1016/j.laa.2005.05.022

[7] S. Sivasubramanian, A q-analogue of Graham, Hoffman and Hosoya’s result, Electron. J. Combin. 17 (2010) #21.

[8] P. Lancaster, Theory of Matrices (Academic Press, NY, 1969).

[9] W. Yan, Y.-N. Yeh, The determinants of q-distance matrices of trees and two quantities relating to permutations, Adv. in Appl. Math. 39 (2007) 311-321. doi:10.1016/j.aam.2006.04.002