Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_1_a7, author = {Su, Li and Li, Hong-Hai and Zhang, Jing}, title = {The {Minimum} {Spectral} {Radius} of {Signless} {Laplacian} of {Graphs} with a {Given} {Clique} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {95--102}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a7/} }
TY - JOUR AU - Su, Li AU - Li, Hong-Hai AU - Zhang, Jing TI - The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 95 EP - 102 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a7/ LA - en ID - DMGT_2014_34_1_a7 ER -
%0 Journal Article %A Su, Li %A Li, Hong-Hai %A Zhang, Jing %T The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number %J Discussiones Mathematicae. Graph Theory %D 2014 %P 95-102 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a7/ %G en %F DMGT_2014_34_1_a7
Su, Li; Li, Hong-Hai; Zhang, Jing. The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 95-102. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a7/
[1] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Chinese Univ. (B) 17 (2002) 371-376. doi:10.1007/s11766-002-0017-7
[2] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171. doi:10.1016/j.laa.2007.01.009
[3] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian I, Publ. Inst. Math. (Beograd) 99 (2009) 19-33.
[4] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian II, Linear Algebra Appl. 432 (2010) 2257-2272. doi:10.1016/j.laa.2009.05.020
[5] E.R. van Dam and W. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272. doi:10.1016/S0024-3795(03)00483-X
[6] W. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin. 25 (2004) 199-211. doi:10.1016/S0195-6698(03)00100-8
[7] B. Mohar and W. Woess, A survey on spectra of infnite graphs, Bull. London Math. Soc. 21 (1989) 209-234. doi:10.1112/blms/21.3.209
[8] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra Appl. 722 (2007) 736-741. doi:10.1016/j.laa.2006.12.005
[9] D. Stevanović and P. Hansen, The minimum spectral radius of graphs with a given clique number, Electron. J. Linear Algebra 17 (2008) 110-117.