The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 95-102.

Voir la notice de l'article provenant de la source Library of Science

In this paper we observe that the minimal signless Laplacian spectral radius is obtained uniquely at the kite graph PK_n-ω,ω among all connected graphs with n vertices and clique number ω. In addition, we show that the spectral radius μ of PK_m,ω (m≥1) satisfies 1/2(2ω-1+√(4ω^2-12ω+17))≤μ≤ 2ω-1. More precisely, for m gt;1, μ satisfies the equation μ-ω-ω-1/μ-2ω+3=a_m√(μ^2-4μ)+1/t_1, where a_m=1/1-t_1^2m+3 and t_1=μ-2+√((μ-2)^2-4)/2. At last the spectral radius μ(PK_∞,ω) of the infinite graph PK_∞,ω is also discussed.
Keywords: clique number, kite graph, signless Laplacian, spectral radius
@article{DMGT_2014_34_1_a7,
     author = {Su, Li and Li, Hong-Hai and Zhang, Jing},
     title = {The {Minimum} {Spectral} {Radius} of {Signless} {Laplacian} of {Graphs} with a {Given} {Clique} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a7/}
}
TY  - JOUR
AU  - Su, Li
AU  - Li, Hong-Hai
AU  - Zhang, Jing
TI  - The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 95
EP  - 102
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a7/
LA  - en
ID  - DMGT_2014_34_1_a7
ER  - 
%0 Journal Article
%A Su, Li
%A Li, Hong-Hai
%A Zhang, Jing
%T The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 95-102
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a7/
%G en
%F DMGT_2014_34_1_a7
Su, Li; Li, Hong-Hai; Zhang, Jing. The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 95-102. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a7/

[1] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Chinese Univ. (B) 17 (2002) 371-376. doi:10.1007/s11766-002-0017-7

[2] D. Cvetković, P. Rowlinson and S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171. doi:10.1016/j.laa.2007.01.009

[3] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian I, Publ. Inst. Math. (Beograd) 99 (2009) 19-33.

[4] D. Cvetković and S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian II, Linear Algebra Appl. 432 (2010) 2257-2272. doi:10.1016/j.laa.2009.05.020

[5] E.R. van Dam and W. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272. doi:10.1016/S0024-3795(03)00483-X

[6] W. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin. 25 (2004) 199-211. doi:10.1016/S0195-6698(03)00100-8

[7] B. Mohar and W. Woess, A survey on spectra of infnite graphs, Bull. London Math. Soc. 21 (1989) 209-234. doi:10.1112/blms/21.3.209

[8] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra Appl. 722 (2007) 736-741. doi:10.1016/j.laa.2006.12.005

[9] D. Stevanović and P. Hansen, The minimum spectral radius of graphs with a given clique number, Electron. J. Linear Algebra 17 (2008) 110-117.