Supermagic Graphs Having a Saturated Vertex
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 75-84.

Voir la notice de l'article provenant de la source Library of Science

A graph is called supermagic if it admits a labeling of the edges by pairwise different consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we establish some conditions for graphs with a saturated vertex to be supermagic. Inter alia we show that complete multipartite graphs K1,n,n and K1,2,...,2 are supermagic.
Keywords: supermagic graph, saturated vertex, vertex-magic total labeling
@article{DMGT_2014_34_1_a5,
     author = {Ivan\v{c}o, Jaroslav and Poll\'akov\'a, Tatiana},
     title = {Supermagic {Graphs} {Having} a {Saturated} {Vertex}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {75--84},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a5/}
}
TY  - JOUR
AU  - Ivančo, Jaroslav
AU  - Polláková, Tatiana
TI  - Supermagic Graphs Having a Saturated Vertex
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 75
EP  - 84
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a5/
LA  - en
ID  - DMGT_2014_34_1_a5
ER  - 
%0 Journal Article
%A Ivančo, Jaroslav
%A Polláková, Tatiana
%T Supermagic Graphs Having a Saturated Vertex
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 75-84
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a5/
%G en
%F DMGT_2014_34_1_a5
Ivančo, Jaroslav; Polláková, Tatiana. Supermagic Graphs Having a Saturated Vertex. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a5/

[1] L’. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428-2436. doi:10.1016/j.disc.2011.07.014

[2] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 18 (2011) #DS6.

[3] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000) 99-114.

[4] J. Ivančo, Magic and supermagic dense bipartite graphs, Discuss. Math. Graph Theory 27 (2007) 583-591. doi:10.7151/dmgt.1384

[5] J. Ivančo, A construction of supermagic graphs, AKCE Int. J. Graphs Comb. 6 (2009) 91-102.

[6] J. Ivančo and T. Polláková, On magic joins of graphs, Math. Bohem. (to appear).

[7] J. Ivančo and A. Semaničová, Some constructions of supermagic graphs using antimagic graphs, SUT J. Math. 42 (2006) 177-186.

[8] J.A. MacDougall, M. Miller, Slamin and W.D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61 (2002) 3-21.

[9] J. Sedláček, Problem 27. Theory of Graphs and Its Applications, Proc. Symp. Smolenice, Praha (1963) 163-164.

[10] A. Semaničová, Magic graphs having a saturated vertex, Tatra Mt. Math. Publ. 36 (2007) 121-128.

[11] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031-1059. doi:10.4153/CJM-1966-104-7

[12] W.D. Wallis, Magic Graphs (Birkhäuser, Boston - Basel - Berlin, 2001). doi:10.1007/978-1-4612-0123-6