Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_1_a5, author = {Ivan\v{c}o, Jaroslav and Poll\'akov\'a, Tatiana}, title = {Supermagic {Graphs} {Having} a {Saturated} {Vertex}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {75--84}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a5/} }
Ivančo, Jaroslav; Polláková, Tatiana. Supermagic Graphs Having a Saturated Vertex. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a5/
[1] L’. Bezegová and J. Ivančo, On conservative and supermagic graphs, Discrete Math. 311 (2011) 2428-2436. doi:10.1016/j.disc.2011.07.014
[2] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 18 (2011) #DS6.
[3] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000) 99-114.
[4] J. Ivančo, Magic and supermagic dense bipartite graphs, Discuss. Math. Graph Theory 27 (2007) 583-591. doi:10.7151/dmgt.1384
[5] J. Ivančo, A construction of supermagic graphs, AKCE Int. J. Graphs Comb. 6 (2009) 91-102.
[6] J. Ivančo and T. Polláková, On magic joins of graphs, Math. Bohem. (to appear).
[7] J. Ivančo and A. Semaničová, Some constructions of supermagic graphs using antimagic graphs, SUT J. Math. 42 (2006) 177-186.
[8] J.A. MacDougall, M. Miller, Slamin and W.D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61 (2002) 3-21.
[9] J. Sedláček, Problem 27. Theory of Graphs and Its Applications, Proc. Symp. Smolenice, Praha (1963) 163-164.
[10] A. Semaničová, Magic graphs having a saturated vertex, Tatra Mt. Math. Publ. 36 (2007) 121-128.
[11] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031-1059. doi:10.4153/CJM-1966-104-7
[12] W.D. Wallis, Magic Graphs (Birkhäuser, Boston - Basel - Berlin, 2001). doi:10.1007/978-1-4612-0123-6