Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_1_a14, author = {Knor, Martin}, title = {Smallest {Regular} {Graphs} of {Given} {Degree} and {Diameter}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {187--191}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a14/} }
Knor, Martin. Smallest Regular Graphs of Given Degree and Diameter. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 187-191. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a14/
[1] E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo Univ. 20 (1973) 191-208.
[2] E. Bannai and T. Ito, Regular graphs with excess one, Discrete Math. 37 (1981) 147-158. doi:10.1016/0012-365X(81)90215-6
[3] R.M. Damerell, On Moore graphs, Proc. Cambridge Philos. Soc. 74 (1973) 227-236. doi:10.1017/S0305004100048015
[4] P. Erdös, S. Fajtlowicz and A.J. Hoffman, Maximum degree in graphs of diameter 2, Networks 10 (1980) 87-90. doi:10.1002/net.3230100109
[5] A.J. Hoffman and R.R. Singleton, On Moore graphs with diameter 2 and 3, IBM J. Res. Develop. 4 (1960) 497-504. doi:10.1147/rd.45.0497
[6] M. Knor and J. Širáň, Smallest vertex-transitive graphs of given degree and diameter, J. Graph Theory, (to appear).
[7] M. Miller and J. Širáň, Moore graphs and beyond: A survey of the degree-diameter problem, Electron. J. Combin., Dynamic survey No. D14 (2005), 61pp.