Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_1_a1, author = {Tomescu, Ioan}, title = {Hypergraphs with {Pendant} {Paths} are not {Chromatically} {Unique}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {23--29}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a1/} }
Tomescu, Ioan. Hypergraphs with Pendant Paths are not Chromatically Unique. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a1/
[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[2] S.A. Bokhary, I. Tomescu and A.A. Bhatti, On the chromaticity of multi-bridge hypergraphs, Graphs Combin. 25 (2009) 145-152. doi:10.1007/s00373-008-0831-7
[3] M. Borowiecki and E. Lazuka, Chromatic polynomials of hypergraphs, Discuss.Math. Graph Theory 20 (2000) 293-301. doi:10.7151/dmgt.1128
[4] C.Y. Chao and E.G. Whitehead, Jr., On chromatic equivalence of graphs, in: Theory and Applications of Graphs, Y. Alavi and D.R. Lick (Ed(s)), (Lecture Notes Math. 642, New York, Springer (1978)) 121-131.
[5] D. Dellamonica, V. Koubek, D.M. Martin and V. Rödl, On a conjecture of Thomassen concerning subgraphs of large girth, J. Graph Theory 67 (2011) 316-331. doi:10.1002/jgt.20534
[6] K. Dohmen, Chromatische Polynome von Graphen und Hypergraphen (Dissertation, Düsseldorf, 1993).
[7] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. Lond. Math. Soc. 35 (1960) 85-90. doi:10.1112/jlms/s1-35.1.85
[8] Z. Füredi, On finite set-systems whose intersection is a kernel of a star, Discrete Math. 47 (1983) 129-132. doi:10.1016/0012-365X(83)90081-X
[9] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285. doi:10.1007/BF01787578
[10] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory (B) 72 (1998) 229-235. doi:10.1006/jctb.1997.1811
[11] I. Tomescu, Sunflower hypergraphs are chromatically unique, Discrete Math. 285 (2004) 355-357. doi:10.1016/j.disc.2004.02.015
[12] I. Tomescu, On the chromaticity of sunflower hypergraphs SH(n, p, h), Discrete Math. 307 (2007) 781-786. doi:10.1016/j.disc.2006.07.026
[13] I. Tomescu and S. Javed, On the chromaticity of quasi linear hypergraphs, Graphs Combin. 29 (2013) 1921-1026. doi:10.1007/s00373-012-1232-5
[14] M. Walter, Some results on chromatic polynomials of hypergraphs, Electron. J. Combin. 16 (2009) R94.