Hypergraphs with Pendant Paths are not Chromatically Unique
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 23-29

Voir la notice de l'article provenant de la source Library of Science

In this note it is shown that every hypergraph containing a pendant path of length at least 2 is not chromatically unique. The same conclusion holds for h-uniform r-quasi linear 3-cycle if r ≥ 2.
Keywords: sunflower hypergraph, chromatic polynomial, pendant path, chromatic uniqueness
@article{DMGT_2014_34_1_a1,
     author = {Tomescu, Ioan},
     title = {Hypergraphs with {Pendant} {Paths} are not {Chromatically} {Unique}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {23--29},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a1/}
}
TY  - JOUR
AU  - Tomescu, Ioan
TI  - Hypergraphs with Pendant Paths are not Chromatically Unique
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 23
EP  - 29
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a1/
LA  - en
ID  - DMGT_2014_34_1_a1
ER  - 
%0 Journal Article
%A Tomescu, Ioan
%T Hypergraphs with Pendant Paths are not Chromatically Unique
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 23-29
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a1/
%G en
%F DMGT_2014_34_1_a1
Tomescu, Ioan. Hypergraphs with Pendant Paths are not Chromatically Unique. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/DMGT_2014_34_1_a1/