Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_4_a9, author = {Favaron, Odile}, title = {The {b-Domatic} {Number} of a {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {747--757}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a9/} }
Favaron, Odile. The b-Domatic Number of a Graph. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 747-757. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a9/
[1] M. Alkhateeb and A. Kohl, Upper bounds on the b-chromatic number and results for restricted graph classes, Discuss. Math. Graph Theory 31 (2011) 709-735. doi:10.7151/dmgt.1575
[2] D. Barth, J. Cohen and T. Faik, Non approximality and non-continuity of the fall coloring problem, LRI Research report, Paris-Sud University 1402 (2005).
[3] S. Cabello and M. Jakovac, On the b-chromatic number of regular graphs, Discrete Appl. Math. 159 (2011) 1303-1310. doi:10.1016/j.dam.2011.04.028
[4] E.J. Cockayne, Domination in undirected graphs-a survey, in: Theory and Applications of Graphs, Lectures Notes in Math. 642, (Springer, Berlin, 1978) 141-147. doi:10.1007/BFb0070371
[5] E.J. Cockayne, and S.T. Hedetniemi, Disjoint independent dominating sets in graphs, Discrete Math. 15 (1976) 213-222. doi:10.1016/0012-365X(76)90026-1
[6] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261. doi:10.1002/net.3230070305
[7] G.J. Chang, The domatic number problem, Discrete Math. 125 (1994) 115-122. doi:10.1016/0012-365X(94)90151-1
[8] S. Corteel, M. Valencia-Pabon and J.-C. Vera, On approximating the b-chromatic number, Discrete Appl. Math. 146 (2005) 106-110. doi:10.1016/j.dam.2004.09.006
[9] J.E. Dunbar, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisley, R.C. Laskar and D.F. Rall, Fall colorings in graphs, J. Combin. Math. Combin. Comput. 33 (2000) 257-273.
[10] F. Harary, S.T. Hedetniemi and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math. 26 (1967) 453-462.
[11] F. Harary and S.T. Hedetniemi, The achromatic number of a graph, J. Combin. Theory 8 (1970) 154-161. doi:10.1016/S0021-9800(70)80072-2
[12] C.T. Hoang, F. Maffray and M. Mechebbek, A characterization of b-perfect graphs, J. Graph Theory 71 (2012) 95-122. doi:10.1002/jgt.20635
[13] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141. doi:10.1016/S0166-218X(98)00146-2
[14] J. Ivančo, An interpolation theorem for partitions which are indivisible with respect to cohereditary properties, J. Combin. Theory (B) 52 (1991) 97-101. doi:10.1016/0095-8956(91)90095-2
[15] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277. doi:10.1016/S0012-365X(01)00469-1
[16] J. Kratochvíl, Zs. Tuza and M. Voigt, On the b-chromatic number of graphs, Lect. Notes Comput. Sci. 2573 (2002) 310-320. doi:10.1007/3-540-36379-3 27
[17] J. Lyle, N. Drake and R. Laskar, Independent domatic partitioning or fall coloring of strongly chordal graphs, Congr. Numer. 172 (2005) 149-159.
[18] D.F. Manlove, Minimaximal and maximinimal optimisation problems: a partial order approach (PhD Thesis, Glasgow, 1998).
[19] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ., 38, Providence, 1962).
[20] M. Valencia-Pabon, Idomatic partitions of direct products of complete graphs, Discrete Math. 310 (2010) 1118-1122. doi:10.1016/j.disc.2009.10.012
[21] B. Zelinka, Adomatic and idomatic numbers of graphs, Math. Slovaca 33 (1983) 99-103.
[22] B. Zelinka, Domatically critical graphs, Czechoslovak Math. J. 30 (1980) 486-489.