The b-Domatic Number of a Graph
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 747-757.

Voir la notice de l'article provenant de la source Library of Science

Besides the classical chromatic and achromatic numbers of a graph related to minimum or minimal vertex partitions into independent sets, the b-chromatic number was introduced in 1998 thanks to an alternative definition of the minimality of such partitions. When independent sets are replaced by dominating sets, the parameters corresponding to the chromatic and achromatic numbers are the domatic and adomatic numbers d(G) and ad(G). We introduce the b-domatic number bd(G) as the counterpart of the b-chromatic number by giving an alternative definition of the maximality of a partition into dominating sets. We initiate the study of bd(G) by giving some properties and examples.
Keywords: domatic number, adomatic number, b-domatic number, bchromatic number, idomatic number, partition
@article{DMGT_2013_33_4_a9,
     author = {Favaron, Odile},
     title = {The {b-Domatic} {Number} of a {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {747--757},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a9/}
}
TY  - JOUR
AU  - Favaron, Odile
TI  - The b-Domatic Number of a Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 747
EP  - 757
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a9/
LA  - en
ID  - DMGT_2013_33_4_a9
ER  - 
%0 Journal Article
%A Favaron, Odile
%T The b-Domatic Number of a Graph
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 747-757
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a9/
%G en
%F DMGT_2013_33_4_a9
Favaron, Odile. The b-Domatic Number of a Graph. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 747-757. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a9/

[1] M. Alkhateeb and A. Kohl, Upper bounds on the b-chromatic number and results for restricted graph classes, Discuss. Math. Graph Theory 31 (2011) 709-735. doi:10.7151/dmgt.1575

[2] D. Barth, J. Cohen and T. Faik, Non approximality and non-continuity of the fall coloring problem, LRI Research report, Paris-Sud University 1402 (2005).

[3] S. Cabello and M. Jakovac, On the b-chromatic number of regular graphs, Discrete Appl. Math. 159 (2011) 1303-1310. doi:10.1016/j.dam.2011.04.028

[4] E.J. Cockayne, Domination in undirected graphs-a survey, in: Theory and Applications of Graphs, Lectures Notes in Math. 642, (Springer, Berlin, 1978) 141-147. doi:10.1007/BFb0070371

[5] E.J. Cockayne, and S.T. Hedetniemi, Disjoint independent dominating sets in graphs, Discrete Math. 15 (1976) 213-222. doi:10.1016/0012-365X(76)90026-1

[6] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261. doi:10.1002/net.3230070305

[7] G.J. Chang, The domatic number problem, Discrete Math. 125 (1994) 115-122. doi:10.1016/0012-365X(94)90151-1

[8] S. Corteel, M. Valencia-Pabon and J.-C. Vera, On approximating the b-chromatic number, Discrete Appl. Math. 146 (2005) 106-110. doi:10.1016/j.dam.2004.09.006

[9] J.E. Dunbar, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisley, R.C. Laskar and D.F. Rall, Fall colorings in graphs, J. Combin. Math. Combin. Comput. 33 (2000) 257-273.

[10] F. Harary, S.T. Hedetniemi and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math. 26 (1967) 453-462.

[11] F. Harary and S.T. Hedetniemi, The achromatic number of a graph, J. Combin. Theory 8 (1970) 154-161. doi:10.1016/S0021-9800(70)80072-2

[12] C.T. Hoang, F. Maffray and M. Mechebbek, A characterization of b-perfect graphs, J. Graph Theory 71 (2012) 95-122. doi:10.1002/jgt.20635

[13] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141. doi:10.1016/S0166-218X(98)00146-2

[14] J. Ivančo, An interpolation theorem for partitions which are indivisible with respect to cohereditary properties, J. Combin. Theory (B) 52 (1991) 97-101. doi:10.1016/0095-8956(91)90095-2

[15] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277. doi:10.1016/S0012-365X(01)00469-1

[16] J. Kratochvíl, Zs. Tuza and M. Voigt, On the b-chromatic number of graphs, Lect. Notes Comput. Sci. 2573 (2002) 310-320. doi:10.1007/3-540-36379-3 27

[17] J. Lyle, N. Drake and R. Laskar, Independent domatic partitioning or fall coloring of strongly chordal graphs, Congr. Numer. 172 (2005) 149-159.

[18] D.F. Manlove, Minimaximal and maximinimal optimisation problems: a partial order approach (PhD Thesis, Glasgow, 1998).

[19] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ., 38, Providence, 1962).

[20] M. Valencia-Pabon, Idomatic partitions of direct products of complete graphs, Discrete Math. 310 (2010) 1118-1122. doi:10.1016/j.disc.2009.10.012

[21] B. Zelinka, Adomatic and idomatic numbers of graphs, Math. Slovaca 33 (1983) 99-103.

[22] B. Zelinka, Domatically critical graphs, Czechoslovak Math. J. 30 (1980) 486-489.