Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_4_a12, author = {Azarija, Jernej}, title = {Note: {Sharp} {Upper} and {Lower} {Bounds} on the {Number} of {Spanning} {Trees} in {Cartesian} {Product} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {785--790}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a12/} }
TY - JOUR AU - Azarija, Jernej TI - Note: Sharp Upper and Lower Bounds on the Number of Spanning Trees in Cartesian Product of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 785 EP - 790 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a12/ LA - en ID - DMGT_2013_33_4_a12 ER -
%0 Journal Article %A Azarija, Jernej %T Note: Sharp Upper and Lower Bounds on the Number of Spanning Trees in Cartesian Product of Graphs %J Discussiones Mathematicae. Graph Theory %D 2013 %P 785-790 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a12/ %G en %F DMGT_2013_33_4_a12
Azarija, Jernej. Note: Sharp Upper and Lower Bounds on the Number of Spanning Trees in Cartesian Product of Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 785-790. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a12/
[1] R.B. Bapat and S. Gupta, Resistance distance in wheels and fans, Indian J. Pure Appl. Math. 41 (2010) 1-13.
[2] Z. Bogdanowicz, Formulas for the number of spanning trees in a fan, Appl. Math. Sci. 16 (2008) 781-786.
[3] F.T. Boesch, On unreliabillity polynomials and graph connectivity in reliable network synthesis, J. Graph Theory 10 (1986) 339-352. doi:10.1002/jgt.3190100311
[4] R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab. 21 (1993) 1329-1371. doi:10.1214/aop/1176989121
[5] G.A. Cayley, A theorem on trees, Quart. J. Math 23 (1889) 276-378. doi:10.1017/CBO9780511703799.010
[6] M.H.S. Haghighi and K. Bibak, Recursive relations for the number of spanning trees, Appl. Math. Sci. 46 (2009) 2263-2269.
[7] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, 2nd Edition (CRC press, 2011).
[8] G.G. Kirchhoff, ¨Uber die Aufl¨osung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Strome gefhrt wird, Ann. Phy. Chem. 72 (1847) 497-508. doi:10.1002/andp.18471481202
[9] B. Mohar, The laplacian spectrum of graphs, in: Graph Theory, Combinatorics, and Applications (Wiley, 1991).
[10] R. Shrock and F.Y. Wu, Spanning trees on graphs and lattices in d dimensions, J. Phys. A 33 (2000) 3881-3902. doi:10.1088/0305-4470/33/21/303