Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_4_a11, author = {Krop, Elliot and Krop, Irina}, title = {Almost-Rainbow {Edge-Colorings} of {Some} {Small} {Subgraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {771--784}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a11/} }
Krop, Elliot; Krop, Irina. Almost-Rainbow Edge-Colorings of Some Small Subgraphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 771-784. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a11/
[1] M. Axenovich, A generalized Ramsey problem, Discrete Math. 222 (2000) 247-249. doi:10.1016/S0012-365X(00)00052-2
[2] M. Axenovich, Z. Füredi and D. Mubayi, On generalized Ramsey theory: the bipartite case, J. Combin. Theory (B) 79 (2000) 66-86. doi:10.1006/jctb.1999.1948
[3] R. Diestel, Graph Theory, Third Edition (Springer-Verlag, Heidelberg, Graduate Texts in Mathematics, Volume 173, 2005).
[4] P. Erdös, Solved and unsolved problems in combinatorics and combinatorial number theory, Congr. Numer. 32 (1981) 49-62.
[5] P. Erdös and A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (1997) 459-467. doi:10.1007/BF01195000
[6] J. Fox and B. Sudakov, Ramsey-type problem for an almost monochromatic K4, SIAM J. Discrete Math. 23 (2008) 155-162. doi:10.1137/070706628
[7] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: A survey, Graphs Combin. 26 (2010) 1-30. doi:10.1007/s00373-010-0891-3
[8] A. Kostochka and D. Mubayi, When is an almost monochromatic K4 guaranteed?, Combin. Probab. Comput. 17 (2008) 823-830. doi:10.1017/S0963548308009413
[9] D. Mubayi, Edge-coloring cliques with three colors on all four cliques, Combinatorica 18 (1998) 293-296. doi:10.1007/PL00009822
[10] R. Wilson, Graph Theory, Fourth Edition (Prentice Hall, Pearson Education Limited, 1996).