Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 759-770
Voir la notice de l'article provenant de la source Library of Science
We prove that every planar graph with maximum degree Δ is strong edge (2 Δ − 1)-colorable if its girth is at least 40 [ Δ/2 ] +1. The bound 2 Δ −1 is reached at any graph that has two adjacent vertices of degree Δ .
Keywords:
planar graph, edge coloring, 2-distance coloring, strong edgecoloring
@article{DMGT_2013_33_4_a10,
author = {Borodin, Oleg V. and Ivanova, Anna O.},
title = {Precise {Upper} {Bound} for the {Strong} {Edge} {Chromatic} {Number} of {Sparse} {Planar} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {759--770},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a10/}
}
TY - JOUR AU - Borodin, Oleg V. AU - Ivanova, Anna O. TI - Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 759 EP - 770 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a10/ LA - en ID - DMGT_2013_33_4_a10 ER -
%0 Journal Article %A Borodin, Oleg V. %A Ivanova, Anna O. %T Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs %J Discussiones Mathematicae. Graph Theory %D 2013 %P 759-770 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a10/ %G en %F DMGT_2013_33_4_a10
Borodin, Oleg V.; Ivanova, Anna O. Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 759-770. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a10/