Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 759-770

Voir la notice de l'article provenant de la source Library of Science

We prove that every planar graph with maximum degree Δ is strong edge (2 Δ − 1)-colorable if its girth is at least 40 [ Δ/2 ] +1. The bound 2 Δ −1 is reached at any graph that has two adjacent vertices of degree Δ .
Keywords: planar graph, edge coloring, 2-distance coloring, strong edgecoloring
@article{DMGT_2013_33_4_a10,
     author = {Borodin, Oleg V. and Ivanova, Anna O.},
     title = {Precise {Upper} {Bound} for the {Strong} {Edge} {Chromatic} {Number} of {Sparse} {Planar} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {759--770},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a10/}
}
TY  - JOUR
AU  - Borodin, Oleg V.
AU  - Ivanova, Anna O.
TI  - Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 759
EP  - 770
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a10/
LA  - en
ID  - DMGT_2013_33_4_a10
ER  - 
%0 Journal Article
%A Borodin, Oleg V.
%A Ivanova, Anna O.
%T Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 759-770
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a10/
%G en
%F DMGT_2013_33_4_a10
Borodin, Oleg V.; Ivanova, Anna O. Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 759-770. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a10/