Some Sharp Bounds on the Negative Decision Number of Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 649-656
Voir la notice de l'article provenant de la source Library of Science
Let G = (V,E) be a graph. A function f : V → -1,1 is called a bad function of G if ∑_u∈N_G(v) f(u) ≤ 1 for all v ∈ V where N_G(v) denotes the set of neighbors of v in G. The negative decision number of G, introduced in [12], is the maximum value of ∑_v∈V f(v) taken over all bad functions of G. In this paper, we present sharp upper bounds on the negative decision number of a graph in terms of its order, minimum degree, and maximum degree. We also establish a sharp Nordhaus-Gaddum-type inequality for the negative decision number.
Keywords:
negative decision number, bad function, sharp upper bounds, Nordhaus-Gaddum results
@article{DMGT_2013_33_4_a1,
author = {Liang, Hongyu},
title = {Some {Sharp} {Bounds} on the {Negative} {Decision} {Number} of {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {649--656},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a1/}
}
Liang, Hongyu. Some Sharp Bounds on the Negative Decision Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 4, pp. 649-656. http://geodesic.mathdoc.fr/item/DMGT_2013_33_4_a1/