Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_3_a4, author = {Euler, Reinhardt and Oleksik, Pawe{\l} and Skupie\'n, Zdzis{\l}aw}, title = {Counting {Maximal} {Distance-Independent} {Sets} in {Grid} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {531--557}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a4/} }
TY - JOUR AU - Euler, Reinhardt AU - Oleksik, Paweł AU - Skupień, Zdzisław TI - Counting Maximal Distance-Independent Sets in Grid Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 531 EP - 557 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a4/ LA - en ID - DMGT_2013_33_3_a4 ER -
%0 Journal Article %A Euler, Reinhardt %A Oleksik, Paweł %A Skupień, Zdzisław %T Counting Maximal Distance-Independent Sets in Grid Graphs %J Discussiones Mathematicae. Graph Theory %D 2013 %P 531-557 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a4/ %G en %F DMGT_2013_33_3_a4
Euler, Reinhardt; Oleksik, Paweł; Skupień, Zdzisław. Counting Maximal Distance-Independent Sets in Grid Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 531-557. http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a4/
[1] R. Euler, The Fibonacci number of a grid graph and a new class of integer sequences, J. Integer Seq. 8 (2005) Article 05.2.6.
[2] Z. Füredi, The number of maximal independent sets in connected graphs, J. Graph Theory 11 (1987) 463-470.
[3] Z. Skupień, Independence or domination. Positioning method in recursive counting on paths or cycles, a manuscript (2012).
[4] N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences, (2007). www.research.att.com/~njas/sequences/
[5] R.P. Stanley, Enumerative Combinatorics (Cambridge Univ. Press, vol. 1, 1997). doi:10.1017/CBO9780511805967