Decompositions of Plane Graphs Under Parity Constrains Given by Faces
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 521-530

Voir la notice de l'article provenant de la source Library of Science

An edge coloring of a plane graph G is facially proper if no two faceadjacent edges of G receive the same color. A facial (facially proper) parity edge coloring of a plane graph G is an (facially proper) edge coloring with the property that, for each color c and each face f of G, either an odd number of edges incident with f is colored with c, or color c does not occur on the edges of f. In this paper we deal with the following question: For which integers k does there exist a facial (facially proper) parity edge coloring of a plane graph G with exactly k colors?
Keywords: plane graph, parity partition, edge coloring
@article{DMGT_2013_33_3_a3,
     author = {Czap, J\'ulius and Tuza, Zsolt},
     title = {Decompositions of {Plane} {Graphs} {Under} {Parity} {Constrains} {Given} by {Faces}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {521--530},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a3/}
}
TY  - JOUR
AU  - Czap, Július
AU  - Tuza, Zsolt
TI  - Decompositions of Plane Graphs Under Parity Constrains Given by Faces
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 521
EP  - 530
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a3/
LA  - en
ID  - DMGT_2013_33_3_a3
ER  - 
%0 Journal Article
%A Czap, Július
%A Tuza, Zsolt
%T Decompositions of Plane Graphs Under Parity Constrains Given by Faces
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 521-530
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a3/
%G en
%F DMGT_2013_33_3_a3
Czap, Július; Tuza, Zsolt. Decompositions of Plane Graphs Under Parity Constrains Given by Faces. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 521-530. http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a3/