Decompositions of Plane Graphs Under Parity Constrains Given by Faces
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 521-530.

Voir la notice de l'article provenant de la source Library of Science

An edge coloring of a plane graph G is facially proper if no two faceadjacent edges of G receive the same color. A facial (facially proper) parity edge coloring of a plane graph G is an (facially proper) edge coloring with the property that, for each color c and each face f of G, either an odd number of edges incident with f is colored with c, or color c does not occur on the edges of f. In this paper we deal with the following question: For which integers k does there exist a facial (facially proper) parity edge coloring of a plane graph G with exactly k colors?
Keywords: plane graph, parity partition, edge coloring
@article{DMGT_2013_33_3_a3,
     author = {Czap, J\'ulius and Tuza, Zsolt},
     title = {Decompositions of {Plane} {Graphs} {Under} {Parity} {Constrains} {Given} by {Faces}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {521--530},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a3/}
}
TY  - JOUR
AU  - Czap, Július
AU  - Tuza, Zsolt
TI  - Decompositions of Plane Graphs Under Parity Constrains Given by Faces
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 521
EP  - 530
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a3/
LA  - en
ID  - DMGT_2013_33_3_a3
ER  - 
%0 Journal Article
%A Czap, Július
%A Tuza, Zsolt
%T Decompositions of Plane Graphs Under Parity Constrains Given by Faces
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 521-530
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a3/
%G en
%F DMGT_2013_33_3_a3
Czap, Július; Tuza, Zsolt. Decompositions of Plane Graphs Under Parity Constrains Given by Faces. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 521-530. http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a3/

[1] J. Czap, S. Jendroľ, F. Kardoš and R. Sotak, Facial parity edge coloring of plane pseudographs, Discrete Math. 312 (2012) 2735-2740. doi:10.1016/j.disc.2012.03.036

[2] J. Czap and Zs. Tuza, Partitions of graphs and set systems under parity constraints, preprint (2011).

[3] D. Gon,calves, Edge partition of planar graphs into two outerplanar graphs, Proceedings of the 37th Annual ACM Symposium on Theory of Computing (2005) 504-512. doi:10.1145/1060590.1060666

[4] S. Grunewald, Chromatic index critical graphs and multigraphs, PhD Thesis, Universitat Bielefeld (2000).

[5] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Cas. SAV (Math. Slovaca) 5 (1955) 101-113 (in Slovak).

[6] T. Matrai, Covering the edges of a graph by three odd subgraphs, J. Graph Theory 53 (2006) 75-82. doi:10.1002/jgt.20170

[7] C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964) 12-12. doi:10.1112/jlms/s1-39.1.12

[8] L. Pyber, Covering the edges of a graph by . . ., Colloquia Mathematica Societatis Janos Bolyai, 60. Sets, Graphs and Numbers (1991) 583-610.

[9] D.P. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin. Theory (B) 83 (2001) 201-212. doi:10.1006/jctb.2001.2047

[10] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964) 25-30.

[11] L. Zhang, Every planar graph with maximum degree 7 is class I, Graphs Combin. 16 (2000) 467-495. doi:10.1007/s003730070009