Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_3_a2, author = {Czap, J\'ulius and Mih\'ok, Peter}, title = {Fractional {-Edge-Coloring} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {509--519}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a2/} }
Czap, Július; Mihók, Peter. Fractional -Edge-Coloring of Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 509-519. http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a2/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008). doi:10.1007/978-1-84628-970-5
[2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540
[3] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270. doi:10.7151/dmgt.1174
[4] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349-359. doi:10.7151/dmgt.1180
[5] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Nat.Bur. Standards 69B (1965) 125-130.
[6] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory, accepted.
[7] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová and R. Soták, Generalized fractional and circular total coloring of graphs, preprint.
[8] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435-440. doi:10.1007/BF01303515
[9] P. Mihók, On graphs matroidal with respect to additive hereditary properties, Graphs, Hypergraphs and Matroids II, Zielona Góra (1987) 53-64.
[10] P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.
[11] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
[12] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, 1997).
[13] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93-97. doi:10.1016/0012-365X(79)90072-4
[14] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits, Proc. Amer. Math. Soc. 38 (1973) 503-506. doi:10.2307/2038939