Fractional -Edge-Coloring of Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 509-519.

Voir la notice de l'article provenant de la source Library of Science

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let be an additive hereditary property of graphs. A -edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property . In this paper we present some results on fractional -edge-colorings. We determine the fractional -edge chromatic number for matroidal properties of graphs.
Keywords: fractional coloring, graph property
@article{DMGT_2013_33_3_a2,
     author = {Czap, J\'ulius and Mih\'ok, Peter},
     title = {Fractional {-Edge-Coloring} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {509--519},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a2/}
}
TY  - JOUR
AU  - Czap, Július
AU  - Mihók, Peter
TI  - Fractional -Edge-Coloring of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 509
EP  - 519
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a2/
LA  - en
ID  - DMGT_2013_33_3_a2
ER  - 
%0 Journal Article
%A Czap, Július
%A Mihók, Peter
%T Fractional -Edge-Coloring of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 509-519
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a2/
%G en
%F DMGT_2013_33_3_a2
Czap, Július; Mihók, Peter. Fractional -Edge-Coloring of Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 509-519. http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a2/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008). doi:10.1007/978-1-84628-970-5

[2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540

[3] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270. doi:10.7151/dmgt.1174

[4] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349-359. doi:10.7151/dmgt.1180

[5] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Nat.Bur. Standards 69B (1965) 125-130.

[6] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory, accepted.

[7] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová and R. Soták, Generalized fractional and circular total coloring of graphs, preprint.

[8] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435-440. doi:10.1007/BF01303515

[9] P. Mihók, On graphs matroidal with respect to additive hereditary properties, Graphs, Hypergraphs and Matroids II, Zielona Góra (1987) 53-64.

[10] P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.

[11] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).

[12] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, 1997).

[13] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93-97. doi:10.1016/0012-365X(79)90072-4

[14] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits, Proc. Amer. Math. Soc. 38 (1973) 503-506. doi:10.2307/2038939