Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_3_a0, author = {Broere, Izak and Heidema, Johannes and Mih\'ok, Peter}, title = {Universality in {Graph} {Properties} with {Degree} {Restrictions}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {477--492}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a0/} }
TY - JOUR AU - Broere, Izak AU - Heidema, Johannes AU - Mihók, Peter TI - Universality in Graph Properties with Degree Restrictions JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 477 EP - 492 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a0/ LA - en ID - DMGT_2013_33_3_a0 ER -
Broere, Izak; Heidema, Johannes; Mihók, Peter. Universality in Graph Properties with Degree Restrictions. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 3, pp. 477-492. http://geodesic.mathdoc.fr/item/DMGT_2013_33_3_a0/
[1] M. Borowiecki, I. Broere, M. Frick, G. Semanišin and P. Mihók, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037
[2] I. Broere and J. Heidema, Some universal directed labelled graphs, Util. Math. 84 (2011) 311-324.
[3] I. Broere and J. Heidema, Universal H-colourable graphs, Graphs Combin., accepted for publication. doi:10.1007/s00373-012-1216-5
[4] I. Broere, J. Heidema and P. Mihók, Constructing universal graphs for inducedhereditary graph properties, Math. Slovaca 63 (2013) 191-200. doi:10.7151/s12175-012-0092-z
[5] G. Cherlin and P. Komjáth, There is no universal countable pentagon-free graph, J. Graph Theory 18 (1994) 337-341. doi:10.1002/jgt.3190180405
[6] G. Cherlin and N. Shi, Graphs omitting a finite set of cycles, J. Graph Theory 21 (1996) 351-355. doi:10.1002/(SICI)1097-0118(199603)21:3h351::AID-JGT11i3.0.CO;2-K
[7] R. Diestel, Graph theory (Fourth Edition, Graduate Texts in Mathematics, 173; Springer, Heidelberg, 2010).
[8] P. Erdös and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Hungar. 17 (1966) 61-99. doi:10.1007/BF02020444
[9] L. Esperet, A. Labourel and P. Ochem, On induced-universal graphs for the class of bounded-degree graphs, Inform. Process. Lett. 108 (2008) 255-260. doi:10.1016/j.ipl.2008.04.020
[10] R. Fraïssé, Sur l’extension aux relations de quelques propriétiés connues des ordres, C. R. Acad. Sci. Paris 237 (1953) 508-510.
[11] Z. Füredi and P. Komjáth, On the existence of countable universal graphs, J. Graph Theory 25 (1997) 53-58. doi:10.1002/(SICI)1097-0118(199705)25:1h53::AID-JGT3i3.0.CO;2-H
[12] A. Hajnal and J. Pach, Monochromatic paths in infinite coloured graphs, Finite and infinite sets, Colloquia Mathematica Societatis János Bolyai, Eger, Hungary 37 (1981) 359-369.
[13] C.W. Henson, A family of countable homogeneous graphs, Pacific J. Math. 38 (1971) 69-83. doi:10.2140/pjm.1971.38.69
[14] P. Komjáth and J. Pach, Universal graphs without large bipartite subgraphs, Mathematika 31 (1984) 282-290. doi:10.1112/S002557930001250X
[15] D.R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096. doi:10.4153/CJM-1970-125-1
[16] P. Mihók, J. Miškuf and G. Semanišin, On universal graphs for hom-properties, Discuss. Math. Graph Theory 29 (2009) 401-409. doi:10.7151/dmgt.1455
[17] R. Rado, Universal graphs and universal functions, Acta Arith. 9 (1964) 331-340.