Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 337-346.

Voir la notice de l'article provenant de la source Library of Science

A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V →0, 1, 2 satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = Σ_u ∈ V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number γ_R (G) (respectively, the independent Roman domination number i_R(G)) is the minimum weight of an RDF (respectively, independent RDF) on G. We say that γ_R(G) strongly equals i_R(G), denoted by γ_R (G) ≡ i_R(G), if every RDF on G of minimum weight is independent. In this paper we provide a constructive characterization of trees T with γ_R(T) ≡ i_R(T).
Keywords: Roman domination, independent Roman domination, strong equality, trees
@article{DMGT_2013_33_2_a7,
     author = {Chellali, Mustapha and Rad, Nader Jafari},
     title = {Strong {Equality} {Between} the {Roman} {Domination} and {Independent} {Roman} {Domination} {Numbers} in {Trees}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {337--346},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a7/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Rad, Nader Jafari
TI  - Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 337
EP  - 346
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a7/
LA  - en
ID  - DMGT_2013_33_2_a7
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Rad, Nader Jafari
%T Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 337-346
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a7/
%G en
%F DMGT_2013_33_2_a7
Chellali, Mustapha; Rad, Nader Jafari. Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 337-346. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a7/

[1] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22. doi:10.1016/j.disc.2003.06.004

[2] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77-87. doi:10.1016/S0012-365X(02)00451-X

[3] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111-124.

[4] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206. doi:10.1002/(SICI)1097-0037(199810)32:3h199::AID-NET4i3.0.CO;2-F

[5] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 325-334. doi:10.7151/dmgt.1178

[6] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115. doi:10.1016/S0012-365X(03)00040-2

[7] N. Jafari Rad and L. Volkmann, Changing and unchanging the Roman domination number of a graph, Util. Math. 89 (2012) 79-95.