Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_2_a5, author = {Sopena, \'Eric and Wu, Jiaojiao}, title = {The {Incidence} {Chromatic} {Number} of {Toroidal} {Grids}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {315--327}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/} }
Sopena, Éric; Wu, Jiaojiao. The Incidence Chromatic Number of Toroidal Grids. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 315-327. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/
[1] I. Algor and N. Alon, The star arboricity of graphs, Discrete Math. 75 (1989) 11-22. doi:10.1016/0012-365X(89)90073-3
[2] R.A. Brualdi and J.J. Quinn Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51-58. doi:10.1016/0012-365X(93)90286-3
[3] P. Erdős and J. Nešetřil, Problem, In: Irregularities of Partitions, G. Halász and V.T. S´os (Eds.) (Springer, New-York) 162-163.
[4] G. Fertin, E. Goddard and A. Raspaud, Acyclic and k-distance coloring of the grid, Inform. Proc. Lett. 87 (2003) 51-58. doi:10.1016/S0020-0190(03)00232-1
[5] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163 (1997) 275-278. doi:10.1016/0012-365X(95)00342-T
[6] M. Hosseini Dolama and E. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Math. Theor. Comput. Sci. 7 (2005) 203-216.
[7] M. Hosseini Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121-128. doi:10.1016/j.disc.2004.01.015
[8] C.I. Huang, Y.L. Wang and S.S. Chung, The incidence coloring numbers of meshes, Comput. Math. Appl. 48 (2004) 1643-1649. doi:10.1016/j.camwa.2004.02.006
[9] D. Li and M. Liu, Incidence coloring of the squares of some graphs, Discrete Math. 308 (2008) 6569-6574. doi:10.1016/j.disc.2007.11.047
[10] X. Li and J. Tu, NP-completeness of 4-incidence colorability of semi-cubic graphs, Discrete Math. 308 (2008) 1334-1340. doi:10.1016/j.disc.2007.03.076
[11] M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree 3, Discrete Math. 292 (2005) 131-141. doi:10.1016/j.disc.2005.02.003
[12] W.C. Shiu, P.C.B. Lam and D.L. Chen, On incidence coloring for some cubic graphs, Discrete Math. 252 (2002) 259-266. doi:10.1016/S0012-365X(01)00457-5
[13] W.C. Shiu and P.K. Sun, Invalid proofs on incidence coloring, Discrete Math. 308 (2008) 6575-6580. doi:10.1016/j.disc.2007.11.030
[14] E. Sopena and J. Wu, Coloring the square of the Cartesian product of two cycles, Discrete Math. 310 (2010) 2327-2333. doi:10.1016/j.disc.2010.05.011
[15] S.D. Wang, D.L. Chen and S.C. Pang, The incidence coloring number of Halin graphs and outerplanar graphs, Discrete Math. 25 (2002) 397-405. doi:10.1016/S0012-365X(01)00302-8
[16] J. Wu, Some results on the incidence coloring number of a graph, Discrete Math. 309 (2009) 3866-3870. doi:10.1016/j.disc.2008.10.027