The Incidence Chromatic Number of Toroidal Grids
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 315-327.

Voir la notice de l'article provenant de la source Library of Science

An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f, or the edge vw equals e or f. The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid T_m,n = C_m □ C_n equals 5 when m, n ≡ 0( 5) and 6 otherwise.
Keywords: incidence coloring, Cartesian product of cycles, toroidal grid
@article{DMGT_2013_33_2_a5,
     author = {Sopena, \'Eric and Wu, Jiaojiao},
     title = {The {Incidence} {Chromatic} {Number} of {Toroidal} {Grids}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {315--327},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/}
}
TY  - JOUR
AU  - Sopena, Éric
AU  - Wu, Jiaojiao
TI  - The Incidence Chromatic Number of Toroidal Grids
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 315
EP  - 327
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/
LA  - en
ID  - DMGT_2013_33_2_a5
ER  - 
%0 Journal Article
%A Sopena, Éric
%A Wu, Jiaojiao
%T The Incidence Chromatic Number of Toroidal Grids
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 315-327
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/
%G en
%F DMGT_2013_33_2_a5
Sopena, Éric; Wu, Jiaojiao. The Incidence Chromatic Number of Toroidal Grids. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 315-327. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/

[1] I. Algor and N. Alon, The star arboricity of graphs, Discrete Math. 75 (1989) 11-22. doi:10.1016/0012-365X(89)90073-3

[2] R.A. Brualdi and J.J. Quinn Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51-58. doi:10.1016/0012-365X(93)90286-3

[3] P. Erdős and J. Nešetřil, Problem, In: Irregularities of Partitions, G. Halász and V.T. S´os (Eds.) (Springer, New-York) 162-163.

[4] G. Fertin, E. Goddard and A. Raspaud, Acyclic and k-distance coloring of the grid, Inform. Proc. Lett. 87 (2003) 51-58. doi:10.1016/S0020-0190(03)00232-1

[5] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163 (1997) 275-278. doi:10.1016/0012-365X(95)00342-T

[6] M. Hosseini Dolama and E. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Math. Theor. Comput. Sci. 7 (2005) 203-216.

[7] M. Hosseini Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121-128. doi:10.1016/j.disc.2004.01.015

[8] C.I. Huang, Y.L. Wang and S.S. Chung, The incidence coloring numbers of meshes, Comput. Math. Appl. 48 (2004) 1643-1649. doi:10.1016/j.camwa.2004.02.006

[9] D. Li and M. Liu, Incidence coloring of the squares of some graphs, Discrete Math. 308 (2008) 6569-6574. doi:10.1016/j.disc.2007.11.047

[10] X. Li and J. Tu, NP-completeness of 4-incidence colorability of semi-cubic graphs, Discrete Math. 308 (2008) 1334-1340. doi:10.1016/j.disc.2007.03.076

[11] M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree 3, Discrete Math. 292 (2005) 131-141. doi:10.1016/j.disc.2005.02.003

[12] W.C. Shiu, P.C.B. Lam and D.L. Chen, On incidence coloring for some cubic graphs, Discrete Math. 252 (2002) 259-266. doi:10.1016/S0012-365X(01)00457-5

[13] W.C. Shiu and P.K. Sun, Invalid proofs on incidence coloring, Discrete Math. 308 (2008) 6575-6580. doi:10.1016/j.disc.2007.11.030

[14] E. Sopena and J. Wu, Coloring the square of the Cartesian product of two cycles, Discrete Math. 310 (2010) 2327-2333. doi:10.1016/j.disc.2010.05.011

[15] S.D. Wang, D.L. Chen and S.C. Pang, The incidence coloring number of Halin graphs and outerplanar graphs, Discrete Math. 25 (2002) 397-405. doi:10.1016/S0012-365X(01)00302-8

[16] J. Wu, Some results on the incidence coloring number of a graph, Discrete Math. 309 (2009) 3866-3870. doi:10.1016/j.disc.2008.10.027