The Incidence Chromatic Number of Toroidal Grids
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 315-327

Voir la notice de l'article provenant de la source Library of Science

An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f, or the edge vw equals e or f. The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid T_m,n = C_m □ C_n equals 5 when m, n ≡ 0( 5) and 6 otherwise.
Keywords: incidence coloring, Cartesian product of cycles, toroidal grid
@article{DMGT_2013_33_2_a5,
     author = {Sopena, \'Eric and Wu, Jiaojiao},
     title = {The {Incidence} {Chromatic} {Number} of {Toroidal} {Grids}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {315--327},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/}
}
TY  - JOUR
AU  - Sopena, Éric
AU  - Wu, Jiaojiao
TI  - The Incidence Chromatic Number of Toroidal Grids
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 315
EP  - 327
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/
LA  - en
ID  - DMGT_2013_33_2_a5
ER  - 
%0 Journal Article
%A Sopena, Éric
%A Wu, Jiaojiao
%T The Incidence Chromatic Number of Toroidal Grids
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 315-327
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/
%G en
%F DMGT_2013_33_2_a5
Sopena, Éric; Wu, Jiaojiao. The Incidence Chromatic Number of Toroidal Grids. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 315-327. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a5/