On the Rainbow Vertex-Connection
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 307-313.

Voir la notice de l'article provenant de la source Library of Science

A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. It was proved that if G is a graph of order n with minimum degree δ, then rvc(G) lt; 11n//δ. In this paper, we show that rvc(G) ≤ 3n//(δ+1)+5 for δ≥√(n-1) -1 and n ≤ 290, while rvc(G) ≤ 4n//(δ + 1) + 5 for 16 ≤δ≤√(n-1)-2 and rvc(G) ≤ 4n//(δ + 1) + C(δ) for 6 ≤δ≤ 15, where C(δ) = e^ 3 log (δ^3 + 2 δ^2 +3)-3(log 3 - 1)/δ - 3 - 2. We also prove that rvc(G) ≤ 3n//4 − 2 for δ = 3, rvc(G) ≤ 3n//5 − 8//5 for δ = 4 and rvc(G) ≤ n//2 − 2 for δ = 5. Moreover, an example constructed by Caro et al. shows that when δ≥√(n-1) - 1 and δ = 3, 4, 5, our bounds are seen to be tight up to additive constants.
Keywords: rainbow vertex-connection, vertex coloring, minimum degree, 2-step dominating set
@article{DMGT_2013_33_2_a4,
     author = {Li, Xueliang and Shi, Yongtang},
     title = {On the {Rainbow} {Vertex-Connection}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {307--313},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a4/}
}
TY  - JOUR
AU  - Li, Xueliang
AU  - Shi, Yongtang
TI  - On the Rainbow Vertex-Connection
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 307
EP  - 313
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a4/
LA  - en
ID  - DMGT_2013_33_2_a4
ER  - 
%0 Journal Article
%A Li, Xueliang
%A Shi, Yongtang
%T On the Rainbow Vertex-Connection
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 307-313
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a4/
%G en
%F DMGT_2013_33_2_a4
Li, Xueliang; Shi, Yongtang. On the Rainbow Vertex-Connection. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 307-313. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a4/

[1] N. Alon and J.H. Spencer, The Probabilistic Method, 3rd ed. (Wiley, New York, 2008).

[2] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer, 2008).

[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) R57.

[4] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21 (2011) 330-347. doi:10.1007/s10878-009-9250-9

[5] L. Chandran, A. Das, D. Rajendraprasad and N. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012) 206-218. doi:10.1002/jgt.20643

[6] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85-98.

[7] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertexconnection of a graph, Theoret. Comput. Sci. 412(35) (2011) 4531-4535. doi:10.1016/j.tcs.2011.04.032

[8] J.R. Griggs and M. Wu, Spanning trees in graphs with minimum degree 4 or 5, Discrete Math. 104 (1992) 167-183. doi:10.1016/0012-365X(92)90331-9

[9] D.J. Kleitman and D.B. West, Spanning trees with many leaves, SIAM J. Discrete Math. 4 (1991) 99-106. doi:10.1137/0404010

[10] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191. doi:/10.1002/jgt.20418

[11] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs in Math., Springer, New York, 2012).

[12] N. Linial and D. Sturtevant, Unpublished result (1987).

[13] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, LNCS 5874 (2009) 432-437.