The Path-Distance-Width of Hypercubes
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 467-470

Voir la notice de l'article provenant de la source Library of Science

The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.
Keywords: path-distance-width, hypercube
@article{DMGT_2013_33_2_a18,
     author = {Otachi, Yota},
     title = {The {Path-Distance-Width} of {Hypercubes}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {467--470},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a18/}
}
TY  - JOUR
AU  - Otachi, Yota
TI  - The Path-Distance-Width of Hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 467
EP  - 470
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a18/
LA  - en
ID  - DMGT_2013_33_2_a18
ER  - 
%0 Journal Article
%A Otachi, Yota
%T The Path-Distance-Width of Hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 467-470
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a18/
%G en
%F DMGT_2013_33_2_a18
Otachi, Yota. The Path-Distance-Width of Hypercubes. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 467-470. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a18/