The Path-Distance-Width of Hypercubes
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 467-470.

Voir la notice de l'article provenant de la source Library of Science

The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.
Keywords: path-distance-width, hypercube
@article{DMGT_2013_33_2_a18,
     author = {Otachi, Yota},
     title = {The {Path-Distance-Width} of {Hypercubes}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {467--470},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a18/}
}
TY  - JOUR
AU  - Otachi, Yota
TI  - The Path-Distance-Width of Hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 467
EP  - 470
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a18/
LA  - en
ID  - DMGT_2013_33_2_a18
ER  - 
%0 Journal Article
%A Otachi, Yota
%T The Path-Distance-Width of Hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 467-470
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a18/
%G en
%F DMGT_2013_33_2_a18
Otachi, Yota. The Path-Distance-Width of Hypercubes. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 467-470. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a18/

[1] S.L. Bezrukov and U. Leck, A simple proof of the Karakhanyan-Riordan theorem on the even discrete torus, SIAM J. Discrete Math. 23 (2009) 1416-1421. doi:10.1137/080715081

[2] B. Bollobás and I. Leader, Compressions and isoperimetric inequalities, J. Combin. Theory (A) 56 (1991) 47-62. doi:10.1016/0097-3165(91)90021-8

[3] L.S. Chandran and T. Kavitha, The treewidth and pathwidth of hypercubes, Discrete Math. 306 (2006) 359-365. doi:10.1016/j.disc.2005.12.011

[4] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1 (1966) 385-393. doi:10.1016/S0021-9800(66)80059-5

[5] H. Kaplan and R. Shamir, Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques, SIAM J. Comput. 25 (1996) 540-561. doi:10.1137/S0097539793258143

[6] D.J. Kleitman, On a problem of Yuzvinsky on separating the n-cube, Discrete Math. 60 (1986) 207-213. doi:10.1016/0012-365X(86)90013-0

[7] H.S. Moghadam, Bandwidth of the product of n paths, Congr. Numer. 173 (2005) 3-15.

[8] Y. Otachi, T. Saitoh, K. Yamanaka, S. Kijima, Y. Okamoto, H. Ono, Y. Uno and K. Yamazaki, Approximability of the path-distance-width for AT-free graphs, Lecture Notes in Comput. Sci., WG 2011 6986 (2011) 271-282. doi:10.1007/978-3-642-25870-1 25

[9] O. Riordan, An ordering on the even discrete torus, SIAM J. Discrete Math. 11 (1998) 110-127. doi:10.1137/S0895480194278234

[10] K. Yamazaki, On approximation intractability of the path-distance-width problem, Discrete Appl. Math. 110 (2001) 317-325. doi:10.1016/S0166-218X(00)00275-4

[11] K. Yamazaki, H.L. Bodlaender, B. de Fluiter, and D.M. Thilikos, Isomorphism for graphs of bounded distance width, Algorithmica 24 (1999) 105-127. doi:10.1007/PL00009273