Two Short Proofs on Total Domination
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 457-459
Cet article a éte moissonné depuis la source Library of Science
A set of vertices of a graph G is a total dominating set if each vertex of G is adjacent to a vertex in the set. The total domination number of a graph γt (G) is the minimum size of a total dominating set. We provide a short proof of the result that γt (G) ≤ 2/3n for connected graphs with n ≥ 3 and a short characterization of the extremal graphs.
Keywords:
total domination
@article{DMGT_2013_33_2_a16,
author = {Bickle, Allan},
title = {Two {Short} {Proofs} on {Total} {Domination}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {457--459},
year = {2013},
volume = {33},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a16/}
}
Bickle, Allan. Two Short Proofs on Total Domination. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 457-459. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a16/
[1] R.C. Brigham, J.R. Carrington and R.P. Vitray, Connected graphs with maximum total domination number, J. Combin. Comput. Combin. Math. 34 (2000) 81-96.
[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219. doi:10.1002/net.3230100304
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc, 1998).