Two Short Proofs on Total Domination
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 457-459.

Voir la notice de l'article provenant de la source Library of Science

A set of vertices of a graph G is a total dominating set if each vertex of G is adjacent to a vertex in the set. The total domination number of a graph γt (G) is the minimum size of a total dominating set. We provide a short proof of the result that γt (G) ≤ 2/3n for connected graphs with n ≥ 3 and a short characterization of the extremal graphs.
Keywords: total domination
@article{DMGT_2013_33_2_a16,
     author = {Bickle, Allan},
     title = {Two {Short} {Proofs} on {Total} {Domination}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {457--459},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a16/}
}
TY  - JOUR
AU  - Bickle, Allan
TI  - Two Short Proofs on Total Domination
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 457
EP  - 459
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a16/
LA  - en
ID  - DMGT_2013_33_2_a16
ER  - 
%0 Journal Article
%A Bickle, Allan
%T Two Short Proofs on Total Domination
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 457-459
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a16/
%G en
%F DMGT_2013_33_2_a16
Bickle, Allan. Two Short Proofs on Total Domination. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 457-459. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a16/

[1] R.C. Brigham, J.R. Carrington and R.P. Vitray, Connected graphs with maximum total domination number, J. Combin. Comput. Combin. Math. 34 (2000) 81-96.

[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219. doi:10.1002/net.3230100304

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc, 1998).