Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_2_a14, author = {Wang, Ruixia and Wang, Shiying}, title = {Underlying {Graphs} of {3-Quasi-Transitive} {Digraphs} and {3-Transitive} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {429--435}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a14/} }
TY - JOUR AU - Wang, Ruixia AU - Wang, Shiying TI - Underlying Graphs of 3-Quasi-Transitive Digraphs and 3-Transitive Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 429 EP - 435 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a14/ LA - en ID - DMGT_2013_33_2_a14 ER -
Wang, Ruixia; Wang, Shiying. Underlying Graphs of 3-Quasi-Transitive Digraphs and 3-Transitive Digraphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 429-435. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a14/
[1] J. Bang-Jensen, Kings in quasi-transitive digraphs, Discrete Math. 185 (1998) 19-27. doi:10.1016/S0012-365X(97)00179-9
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).
[3] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205-219. doi:10.7151/dmgt.1613
[4] A. Ghouila-Houri, Caractérization des graphes non orientés dont onpeut orienter les arrˆetes de mani`ere `aobtenir le graphe dune relation dordre, Comptes Rendus de l’Académie des Sciences Paris 254 (1962) 1370-1371.
[5] H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of strong 3- quasi-transitive digraphs, Discrete Math. 310 (2010) 2495-2498. doi:10.1016/j.disc.2010.06.008
[6] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasitransitive digraphs, Discrete Math. 312 (2012) 2522-2530. doi:10.1016/j.disc.2012.05.005
[7] S.Wang and R.Wang, Independent sets and non-augmentable paths in arc-locally insemicomplete digraphs and quasi-arc-transitive digraphs, Discrete Math. 311 (2011) 282-288. doi:10.1016/j.disc.2010.11.009