Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_2_a12, author = {Meddah, Nac\'era and Blidia, Mostafa}, title = {A {Characterization} of {Trees} for a {New} {Lower} {Bound} on the {K-Independence} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {395--410}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a12/} }
TY - JOUR AU - Meddah, Nacéra AU - Blidia, Mostafa TI - A Characterization of Trees for a New Lower Bound on the K-Independence Number JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 395 EP - 410 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a12/ LA - en ID - DMGT_2013_33_2_a12 ER -
%0 Journal Article %A Meddah, Nacéra %A Blidia, Mostafa %T A Characterization of Trees for a New Lower Bound on the K-Independence Number %J Discussiones Mathematicae. Graph Theory %D 2013 %P 395-410 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a12/ %G en %F DMGT_2013_33_2_a12
Meddah, Nacéra; Blidia, Mostafa. A Characterization of Trees for a New Lower Bound on the K-Independence Number. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 395-410. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a12/
[1] S.T. Hedetniemi, Hereditary properties of graphs, J. Combin. Theory (B) 14 (1973) 94-99. doi:10.1016/S0095-8956(73)80009-7
[2] M. Blidia, M. Chellali, O. Favaron and N. Meddah, On k-independence in graphs with emphasis on trees, Discrete Math. 307 (2007) 2209-2216. doi:10.1016/j.disc.2006.11.007
[3] M. Borowiecki and D. Michalak, Generalized independence and domination in graphs, Discrete Math. 191 (1998) 51-56. doi:10.1016/S0012-365X(98)00092-2
[4] R.L. Brooks, On coloring the nodes of a network, Math. Proc. Cambridge Philos. Soc. 37 (1941) 194-197. doi:10.1017/S030500410002168X
[5] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107. doi:10.1002/jgt.3190150110
[6] O. Favaron, k-domination and k-independence in graphs, Ars Combin. 25 (1988) 159-167.
[7] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combin. Theory (B) 39 (1985) 101-102. doi:10.1016/0095-8956(85)90040-1
[8] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York (1985) 283-300.
[9] J.F. Fink and M.S. Jacobson, n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York (1985) 301-311.
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[12] L. Volkmann, A characterization of bipartite graphs with independence number half their order, Australas. J. Combin. 41 (2008) 219-222.