A Characterization of Trees for a New Lower Bound on the K-Independence Number
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 395-410

Voir la notice de l'article provenant de la source Library of Science

Let k be a positive integer and G = (V,E) a graph of order n. A subset S of V is a k-independent set of G if the maximum degree of the subgraph induced by the vertices of S is less or equal to k − 1. The maximum cardinality of a k-independent set of G is the k-independence number β_k (G). In this paper, we show that for every graph G, β_k (G) ≥ ⌈ ( n + ( χ(G)-1) Σ_v ∈ S(G)min ( | L_v|, k-1) ) / χ(G) ⌉, where χ(G), s(G) and L_v are the chromatic number, the number of supports vertices and the number of leaves neighbors of v, in the graph G, respectively. Moreover, we characterize extremal trees attaining these bounds.
Keywords: domination, independence, k-independence
@article{DMGT_2013_33_2_a12,
     author = {Meddah, Nac\'era and Blidia, Mostafa},
     title = {A {Characterization} of {Trees} for a {New} {Lower} {Bound} on the {K-Independence} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {395--410},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a12/}
}
TY  - JOUR
AU  - Meddah, Nacéra
AU  - Blidia, Mostafa
TI  - A Characterization of Trees for a New Lower Bound on the K-Independence Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 395
EP  - 410
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a12/
LA  - en
ID  - DMGT_2013_33_2_a12
ER  - 
%0 Journal Article
%A Meddah, Nacéra
%A Blidia, Mostafa
%T A Characterization of Trees for a New Lower Bound on the K-Independence Number
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 395-410
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a12/
%G en
%F DMGT_2013_33_2_a12
Meddah, Nacéra; Blidia, Mostafa. A Characterization of Trees for a New Lower Bound on the K-Independence Number. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 395-410. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a12/