On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 387-394.

Voir la notice de l'article provenant de la source Library of Science

Let γ ( C_m□C_n ) be the domination number of the Cartesian product of directed cycles C_m and C_n for m, n ≥ 2. Shaheen [13] and Liu et al. ([11], [12]) determined the value of γ ( C_m□C_n ) when m ≤ 6 and [12] when both m and n ≡ 0 ( 3). In this article we give, in general, the value of γ ( C_m□C_n ) when m ≡ 2( 3) and improve the known lower bounds for most of the remaining cases. We also disprove the conjectured formula for the case m ≡ 0 ( 3) appearing in [12].
Keywords: directed graph, Cartesian product, domination number, directed cycle
@article{DMGT_2013_33_2_a11,
     author = {Mollard, Michel},
     title = {On the {Domination} of {Cartesian} {Product} of {Directed} {Cycles:} {Results} for {Certain} {Equivalence} {Classes} of {Lengths}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {387--394},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/}
}
TY  - JOUR
AU  - Mollard, Michel
TI  - On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 387
EP  - 394
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/
LA  - en
ID  - DMGT_2013_33_2_a11
ER  - 
%0 Journal Article
%A Mollard, Michel
%T On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 387-394
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/
%G en
%F DMGT_2013_33_2_a11
Mollard, Michel. On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 387-394. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/

[1] T.Y. Chang and W.E. Clark, The domination numbers of the 5 × n and 6 × n grid graphs, J. Graph Theory 17 (1993) 81-107. doi:10.1002/jgt.3190170110

[2] M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227.

[3] M. El-Zahar, S. Khamis and Kh. Nazzal, On the domination number of the Cartesian product of the cycle of length n and any graph, Discrete Appl. Math. 155 (2007) 515-522. doi:10.1016/j.dam.2006.07.003

[4] R.J. Faudree and R.H. Schelp, The domination number for the product of graphs, Congr. Numer. 79 (1990) 29-33.

[5] S. Gravier and M. Mollard, On domination numbers of Cartesian product of paths, Discrete Appl. Math. 80 (1997) 247-250. doi:10.1016/S0166-218X(97)00091-7

[6] B. Hartnell and D. Rall, On dominating the Cartesian product of a graph and K2, Discuss. Math. Graph Theory 24 (2004) 389-402. doi:10.7151/dmgt.1238

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc. New York, 1998).

[9] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I, Ars Combin. 18 (1983) 33-44.

[10] S. Klavžar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129-136. doi:10.1016/0166-218X(93)E0167-W

[11] J. Liu, X.D. Zhang, X. Chenand and J. Meng, On domination number of Cartesian product of directed cycles, Inform. Process. Lett. 110 (2010) 171-173. doi:10.1016/j.ipl.2009.11.005

[12] J. Liu, X.D. Zhang, X. Chen and J. Meng, Domination number of Cartesian products of directed cycles, Inform. Process. Lett. 111 (2010) 36-39. doi:10.1016/j.ipl.2010.10.001

[13] R.S. Shaheen, Domination number of toroidal grid digraphs, Util. Math. 78 (2009) 175-184.