On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 387-394

Voir la notice de l'article provenant de la source Library of Science

Let γ ( C_m□C_n ) be the domination number of the Cartesian product of directed cycles C_m and C_n for m, n ≥ 2. Shaheen [13] and Liu et al. ([11], [12]) determined the value of γ ( C_m□C_n ) when m ≤ 6 and [12] when both m and n ≡ 0 ( 3). In this article we give, in general, the value of γ ( C_m□C_n ) when m ≡ 2( 3) and improve the known lower bounds for most of the remaining cases. We also disprove the conjectured formula for the case m ≡ 0 ( 3) appearing in [12].
Keywords: directed graph, Cartesian product, domination number, directed cycle
@article{DMGT_2013_33_2_a11,
     author = {Mollard, Michel},
     title = {On the {Domination} of {Cartesian} {Product} of {Directed} {Cycles:} {Results} for {Certain} {Equivalence} {Classes} of {Lengths}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {387--394},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/}
}
TY  - JOUR
AU  - Mollard, Michel
TI  - On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 387
EP  - 394
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/
LA  - en
ID  - DMGT_2013_33_2_a11
ER  - 
%0 Journal Article
%A Mollard, Michel
%T On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 387-394
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/
%G en
%F DMGT_2013_33_2_a11
Mollard, Michel. On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 387-394. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/