Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_2_a11, author = {Mollard, Michel}, title = {On the {Domination} of {Cartesian} {Product} of {Directed} {Cycles:} {Results} for {Certain} {Equivalence} {Classes} of {Lengths}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {387--394}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/} }
TY - JOUR AU - Mollard, Michel TI - On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 387 EP - 394 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/ LA - en ID - DMGT_2013_33_2_a11 ER -
%0 Journal Article %A Mollard, Michel %T On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths %J Discussiones Mathematicae. Graph Theory %D 2013 %P 387-394 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/ %G en %F DMGT_2013_33_2_a11
Mollard, Michel. On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 387-394. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a11/
[1] T.Y. Chang and W.E. Clark, The domination numbers of the 5 × n and 6 × n grid graphs, J. Graph Theory 17 (1993) 81-107. doi:10.1002/jgt.3190170110
[2] M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227.
[3] M. El-Zahar, S. Khamis and Kh. Nazzal, On the domination number of the Cartesian product of the cycle of length n and any graph, Discrete Appl. Math. 155 (2007) 515-522. doi:10.1016/j.dam.2006.07.003
[4] R.J. Faudree and R.H. Schelp, The domination number for the product of graphs, Congr. Numer. 79 (1990) 29-33.
[5] S. Gravier and M. Mollard, On domination numbers of Cartesian product of paths, Discrete Appl. Math. 80 (1997) 247-250. doi:10.1016/S0166-218X(97)00091-7
[6] B. Hartnell and D. Rall, On dominating the Cartesian product of a graph and K2, Discuss. Math. Graph Theory 24 (2004) 389-402. doi:10.7151/dmgt.1238
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc. New York, 1998).
[9] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I, Ars Combin. 18 (1983) 33-44.
[10] S. Klavžar and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129-136. doi:10.1016/0166-218X(93)E0167-W
[11] J. Liu, X.D. Zhang, X. Chenand and J. Meng, On domination number of Cartesian product of directed cycles, Inform. Process. Lett. 110 (2010) 171-173. doi:10.1016/j.ipl.2009.11.005
[12] J. Liu, X.D. Zhang, X. Chen and J. Meng, Domination number of Cartesian products of directed cycles, Inform. Process. Lett. 111 (2010) 36-39. doi:10.1016/j.ipl.2010.10.001
[13] R.S. Shaheen, Domination number of toroidal grid digraphs, Util. Math. 78 (2009) 175-184.