Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_2_a10, author = {Karthick, T. and Subramanian, C.R.}, title = {Star {Coloring} of {Subcubic} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {373--385}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/} }
Karthick, T.; Subramanian, C.R. Star Coloring of Subcubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 373-385. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/
[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, Coloring with no 2-colored P4’s, Electron. J. Combin. 11 (2004) #R26.
[2] N.R. Aravind and C.R. Subramanian, Bounds on vertex colorings with restrictions on the union of color classes, J. Graph Theory 66 (2011) 213-234. doi:10.1002/jgt.20501
[3] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobshcheniya Akademii Nauk Gruzinskoi SSR, 93 (1979) 21-24 (in Russian).
[4] T.F. Coleman and J.Y. Cai, The cyclic coloring problem an estimation of sparse Hessian matrices, SIAM Journal of Algebraic and Discrete Methods 7 (1986) 221-235. doi:10.1137/0607026
[5] T.F. Coleman and J.J. Moré, Estimation of sparse Hessian matrices and graph coloring problems, Math. Program. 28(3) (1984) 243-270. doi:10.1007/BF02612334
[6] G. Fertin, A. Raspaud and B. Reed, Star coloring of graphs, J. Graph Theory 47 (2004) 163-182. doi:10.1002/jgt.20029
[7] A.H. Gebremedhin, F. Manne and A. Pothen, What color is your Jacobian? Graph coloring for computing derivatives, SIAM Rev. 47 (2005) 629-705. doi:10.1137/S0036144504444711
[8] A.H. Gebremedhin, A. Tarafdar, F. Manne and A. Pothen, New acyclic and star coloring algorithms with applications to computing Hessians, SIAM J. Sci. Comput. 29 (2007) 1042-1072. doi:10.1137/050639879
[9] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408. doi:10.1007/BF02764716
[10] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, 1995).
[11] A.V. Kostochka and C. Stocker, Graphs with maximum degree 5 are acyclically 7- colorable, Ars Math. Contemp. 4 (2011) 153-164.
[12] A. Lyons, Acyclic and star colorings of cographs, Discrete Appl. Math. 159 (2011) 1842-1850. doi:10.1016/j.dam.2011.04.011
[13] S. Skulrattankulchai, Acyclic colorings of subcubic graphs, Inform. Process. Lett. 92 (2004) 161-167. doi:10.1016/j.ipl.2004.08.002
[14] D.B. West, Introduction to Graph Theory, 2nd Edition (Prentice-Hall, Englewood Cliffs, New Jersey, 2000).