Star Coloring of Subcubic Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 373-385.

Voir la notice de l'article provenant de la source Library of Science

A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.
Keywords: vertex coloring, star coloring, subcubic graphs
@article{DMGT_2013_33_2_a10,
     author = {Karthick, T. and Subramanian, C.R.},
     title = {Star {Coloring} of {Subcubic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {373--385},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/}
}
TY  - JOUR
AU  - Karthick, T.
AU  - Subramanian, C.R.
TI  - Star Coloring of Subcubic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 373
EP  - 385
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/
LA  - en
ID  - DMGT_2013_33_2_a10
ER  - 
%0 Journal Article
%A Karthick, T.
%A Subramanian, C.R.
%T Star Coloring of Subcubic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 373-385
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/
%G en
%F DMGT_2013_33_2_a10
Karthick, T.; Subramanian, C.R. Star Coloring of Subcubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 373-385. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/

[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen and R. Ramamurthi, Coloring with no 2-colored P4’s, Electron. J. Combin. 11 (2004) #R26.

[2] N.R. Aravind and C.R. Subramanian, Bounds on vertex colorings with restrictions on the union of color classes, J. Graph Theory 66 (2011) 213-234. doi:10.1002/jgt.20501

[3] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobshcheniya Akademii Nauk Gruzinskoi SSR, 93 (1979) 21-24 (in Russian).

[4] T.F. Coleman and J.Y. Cai, The cyclic coloring problem an estimation of sparse Hessian matrices, SIAM Journal of Algebraic and Discrete Methods 7 (1986) 221-235. doi:10.1137/0607026

[5] T.F. Coleman and J.J. Moré, Estimation of sparse Hessian matrices and graph coloring problems, Math. Program. 28(3) (1984) 243-270. doi:10.1007/BF02612334

[6] G. Fertin, A. Raspaud and B. Reed, Star coloring of graphs, J. Graph Theory 47 (2004) 163-182. doi:10.1002/jgt.20029

[7] A.H. Gebremedhin, F. Manne and A. Pothen, What color is your Jacobian? Graph coloring for computing derivatives, SIAM Rev. 47 (2005) 629-705. doi:10.1137/S0036144504444711

[8] A.H. Gebremedhin, A. Tarafdar, F. Manne and A. Pothen, New acyclic and star coloring algorithms with applications to computing Hessians, SIAM J. Sci. Comput. 29 (2007) 1042-1072. doi:10.1137/050639879

[9] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408. doi:10.1007/BF02764716

[10] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, New York, 1995).

[11] A.V. Kostochka and C. Stocker, Graphs with maximum degree 5 are acyclically 7- colorable, Ars Math. Contemp. 4 (2011) 153-164.

[12] A. Lyons, Acyclic and star colorings of cographs, Discrete Appl. Math. 159 (2011) 1842-1850. doi:10.1016/j.dam.2011.04.011

[13] S. Skulrattankulchai, Acyclic colorings of subcubic graphs, Inform. Process. Lett. 92 (2004) 161-167. doi:10.1016/j.ipl.2004.08.002

[14] D.B. West, Introduction to Graph Theory, 2nd Edition (Prentice-Hall, Englewood Cliffs, New Jersey, 2000).