Star Coloring of Subcubic Graphs
Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 373-385

Voir la notice de l'article provenant de la source Library of Science

A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.
Keywords: vertex coloring, star coloring, subcubic graphs
@article{DMGT_2013_33_2_a10,
     author = {Karthick, T. and Subramanian, C.R.},
     title = {Star {Coloring} of {Subcubic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {373--385},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/}
}
TY  - JOUR
AU  - Karthick, T.
AU  - Subramanian, C.R.
TI  - Star Coloring of Subcubic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2013
SP  - 373
EP  - 385
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/
LA  - en
ID  - DMGT_2013_33_2_a10
ER  - 
%0 Journal Article
%A Karthick, T.
%A Subramanian, C.R.
%T Star Coloring of Subcubic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2013
%P 373-385
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/
%G en
%F DMGT_2013_33_2_a10
Karthick, T.; Subramanian, C.R. Star Coloring of Subcubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 373-385. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a10/