Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2013_33_2_a1, author = {van Aardt, Susan and Frick, Marietjie and Singleton, Joy}, title = {Independent {Detour} {Transversals} in {3-Deficient} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {261--275}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a1/} }
TY - JOUR AU - van Aardt, Susan AU - Frick, Marietjie AU - Singleton, Joy TI - Independent Detour Transversals in 3-Deficient Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2013 SP - 261 EP - 275 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a1/ LA - en ID - DMGT_2013_33_2_a1 ER -
%0 Journal Article %A van Aardt, Susan %A Frick, Marietjie %A Singleton, Joy %T Independent Detour Transversals in 3-Deficient Digraphs %J Discussiones Mathematicae. Graph Theory %D 2013 %P 261-275 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a1/ %G en %F DMGT_2013_33_2_a1
van Aardt, Susan; Frick, Marietjie; Singleton, Joy. Independent Detour Transversals in 3-Deficient Digraphs. Discussiones Mathematicae. Graph Theory, Tome 33 (2013) no. 2, pp. 261-275. http://geodesic.mathdoc.fr/item/DMGT_2013_33_2_a1/
[1] S.A. van Aardt, G. Dlamini, J. Dunbar, M. Frick, and O. Oellermann, The directed path partition conjecture, Discuss. Math. Graph Theory 25 (2005) 331-343. doi:10.7151/dmgt.1286
[2] S.A. van Aardt, J.E. Dunbar, M. Frick, P. Katreniˇc, M.H. Nielsen, and O.R. Oellermann, Traceability of k-traceable oriented graphs, Discrete Math. 310 (2010) 1325-1333. doi:10.1016/j.disc.2009.12.022
[3] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer-Verlag, London, 2001).
[4] J. Bang-Jensen, M.H. Nielsen and A. Yeo, Longest path partitions in generalizations of tournaments, Discrete Math. 306 (2006) 1830-1839. doi:10.1016/j.disc.2006.03.063
[5] J.A. Bondy, Basic graph theory: Paths and circuits, in: Handbook of Combinatorics, R.L. Graham, M. Gr¨otschel and L. Lovász (Ed(s)), (The MIT Press, Cambridge, MA, 1995) Vol I, p. 20.
[6] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C.R. Acad. Sci. Paris 249 (1959) 2151-2152.
[7] C.C. Chen and P. Manalastas Jr., Every finite strongly connected digraph of stability 2 has a Hamiltonian path, Discrete Math. 44 (1983) 243-250. doi:10.1016/0012-365X(83)90188-7
[8] H. Galeana-Sánchez and R. Gómez, Independent sets and non-augmentable paths in generalizations of tournaments, Discrete Math. 308 (2008) 2460-2472. doi:10.1016/j.disc.2007.05.016
[9] H. Galeana-Sánchez and H.A. Rincón-Mejía, Independent sets which meet all longest paths, Discrete Math. 152 (1996) 141-145. doi:10.1016/0012-365X(94)00261-G
[10] F. Havet, Stable set meeting every longest path, Discrete Math. 289 (2004) 169-173. doi:10.1016/j.disc.2004.07.013
[11] J.M. Laborde, C. Payan, N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982) 173-177 (Teubner-Texte Math., 59 1983).
[12] M. Richardson, Solutions of irreflexive relations, Ann. of Math. 58 (1953) 573-590. doi:10.2307/1969755